
AD-A174 179 SOFTWARE PORTABILITY- A CASE STUDY OF THE
MULTI-BACKENDED DATABASE SYSTEM(U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA B D SILBERMAN JUN 86

UNCLASSIFIED FG 9/2 L

EEEEEEmhEEEEEE
EohhEEEEEEohEE
EEIIEEIIEEIIIE
smEohEEEEohhh
EEEEEEEEE-EEEI
IEEIIEEEIIIEEE

"28 12

S 1 226

11111 Lrn

6CROCOPY RESOLUTION TEST CHART
M44TINA[BUREAU OF STANIDARDS -1963-A

D NAVAL POSTGRADUATE SCHOOL
Monterey, California

ITI

S ELECTE
NOV 2 0 1986

ITHESIS
SOFTWARE PORTABILITY:
A CASE STUDY OF THE

MULTI-BACKENDED DATABASE SYSTEM

by

Bruce D. Silberman

June 1986

U Thesis Advisor: David K. Hsiao

Approved for public release; distribution is unlimited.

k6 11 19 002

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

p

SECURITY CLASSIFICATION OF TWIS PAGEi~ J§4 17r
REPORT DOCUMENTATION PAGE

la f TASfjg ,SSIFICATON lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b. OECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
distr ibut ion is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (ifapliabie) Naval Postgraduate School

6c. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sa NAME OF FUNDING /SPONSORING Sb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applikale)

8c. ADDRESS (City, State. and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11 TITLE (Include Security Classification) UNCLASSIFIED
Software Portability: A Case Study of the Multi-Backended Database System

12 PERSONAL AUTHOR(S)

Bruce D. Silberman
'3a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) IS PAGE COUNT

Masters Thesis FROM TO 1986 June 20 104
'6 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

',ELO GROUP SUB-GROUP software portability, multi-backended
database system, database systems,
software systems, network communications

'9 ABSTRACT (Continue on revere if necessary and identity by block number)

The multi-backended database system (MBDS) is a database system

designed for very large databases. MBDS is intended to provide

consistent performance with increased capacity (or improved

performance at a sustained capacity) by distributing the work

of the system among several micro-computers connected to a

common communication network. One of the issues central to the

MBDS design is the portability of the system's software. (Continued) ,6
20 D-SYn13UTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

2 :NCLASSFEDJNLIMITED 0 SAME AS RPT 0CDTIC USERS UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFI(.E SYMBOL
Prof David K. Hsiao 408-646-2253 52Hq

DO FORM 1473.SMAR B3 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASS I FT E U

SECURITY CLASIICATION OF THIS PAGE (Whan 000 Nnfer.4

ABSTRACT (Continued)

This thesis provides a general discussion of the issues

involved in software portability, and then presents a

case study of the MBDS software system.

Accession

DTI "

Distrw-

Dist sp -c1Cd

UNCLASSIFIED2 EUIYCLASSIFICAION OF THIS PAGCMRuh Data Etieeiod)

Approved for public release. distribution unlimited

Software Port ability:
A Case Study of the Multi-Backended Database System

by

Bruce D. Silberman
Lieutenant. United States Navy

B. S.. Florida Technological University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

June 1986

Author: _ _ _ _ _

Bruce D. Silberman

Approved by: ii'Z1 /5

David K. Hsiao. Thesis Advisor

Steven A. DemurjianSecond Reader

Vincent Y..I cm.Chairman,

Department of Computer Science

Kneale T. Marshall,

Dean of Information and Policy Sciences

3

ABSTRACT

2 The multi-backended database system (MBDS) is a database system designed

for very large databases. MBDS is intended to provide consistent performance

with increased capacity (or improved performance at a sustained capacity) by dis-

tributing the work of the system among several micro-computers connected to a

common communication network. One of the issues central to the MBDS design

is the portability of the system's software. This thesis provides a general discus-

sion of the issues involved in software portability, and then presents a case study

of the MBDS software system.

'4

14

TABLE OF CONTENTS

I. A N IN T R O D U C T IO N .. 7

A. THE BA CKG RO UND ... 7

B . A N O V ER V IE W ... 8

C. THE ORGANIZATION OF THESIS .. 10

II. THE SOFTWARE SYSTEM PORTABILITY .. 12

A. A PARADIGM FOR A SOFTWARE SYSTEM 13

B. TY PES OF PORTING ... 16

1. A Change Of The Hardware ... 16

2. A Change Of Translators .. 17

3. A Change Of Operating Systems ... 18

III. THE IMPACT OF THE MBDS DESIGN ON PORTABILITY 20

A. THE M BDS COM PONENTS ... 23

B. PORTING THE MULTI-BACKENDED DATABASE SYSTEM 24

1. Changing the M BDS Hardware ... 24

2. Changing the MBDS Source-Code Compiler 25

3. Changing the MBDS Operating System 27

IV. A CLOSER LOOK AT THE MBDS PORT .. 31

A. THE SEQUENCE OF EVENTS ... 31

B. THE MBDS COMMUNICATION INTERFACES 36

1. Modifying the Intra-Computer Communications 38

2. Creating the New Inter-Computer Communications 40

V. SUMMARY AND CONCLUSIONS ... 45

APPENDIX A - THE MBDS CONTROLLER GET-NET SOURCE CODE ... 48

5

.V FP

APPENDIX B - THE MBDS CONTROLLER PI'T-NET SOURCE CODE ... 62

APPENDIX-C - THE MBDS BACKEND GET-NET SOURCE CODE 71

APPENDIX D - THE MBDS BACKEND PUT-NET SOURCE CODE 87

LIST O F R EFER EN C ES ... 102

INITIAL DISTRIBUTION LIST .. 103

'I

6

2;, - ,,. V., -* ,,.,. .,. -,,..- ,

I. AN INTRODUCTION

A. THE BACKGROUND

It should come as no surprise to anyone involved in computer science to say

that the essence of the entire field is changing. This is probably true for those

persons involved in software development. The trend of rapidly decreasing

hardware costs remains steady. and shows no signs of changing course in the near

future. Software costs therefore represent an ever increasing percentage of total

system costs.

As the level of technology increases, and the relative costs of hardware con-

tinues to decrease. the expense of upgrading to larger, more powerful computing

systems becomes less restrictive. Except for the ever present (and increasing) cost

of new software, the obvious requirement then is for the software to be easily

ported from one system to another. Assuming an environment of truly portable

software. users would find themselves in a situation where the only real costs to be

considered when evaluating a change to a new system would be the cost of the

hardware alone.

There are some obvious benefits to this situation. When the need arises for a

greater capacity or an increased throughput to meet the new requirements. the

upgrade becomes an easier task. Additionally. more powerful software can be

purchased at the outset. when the original computing systems are acquired. Since

the useful life of a software item would no longer end when its underlying

hardware is replaced. higher initial expenses for software could be justified.

7

Cost is not the only factor in support of software portability. It is often desir-

able to provide a uniform. consistent environment across several different comput-

ing systems. The days of the single mainframe which supports all of the com-

puter needs in an organization are fading. Many organizations now have several

different computing systems (usually minis or micros). They may be made by

different manufacturers. run by different operating systems. used for different

tasks. and are networked together frequently to provide a very powerful comput-

ing environment where resources may be shared.

It is also common to see that the same operating system is running on several

different computers (e.g., UNIX. which runs on VAX main frames. ISI 32-bit

micro-computers. IBM 16-bit micro-computers. et. al.). Conversely, hardware

manufacturers often provide a choice of operating systems which will run on the

same hardware: and applications developers will provide versions of their software

which run under different operating systems, and allow exchange of data between

them without modification. In such an environment it is not unreasonable for a

user to desire programs which can be moved between several computing systems.

B. AN OVERVIEW

Portability is essentially the ability of software to migrate among different

hardware configurations and operating systems with little, or no. modification.

This thesis will provide a discussion of techniques which can be used to achieve a

higher degree of portability for software in general. and database management

software in particular.

The need for portable software is evident through all areas- of computer sci-

ence. database management systems (DBMS) present a particularly strong need

for it. Conceptually. DBMS software can be thought of as a specialized operating

system. Like an operating system. DBMIS accepts commands from a command

language (data language). and uses the commands to manage and manipulate files

(data). System users utilize both DBMS and the operating system as support

tools. Like operating systems. the DBMS software tends to be complex and

expensive, often taking many years to develop.

The DBMS software however presents something of a paradox in that the

more powerful DBMS is. the quicker it exceeds its usefulness. This happens not

because DBMS ceases to be adequate, but because the hardware on which the sys-

tem is running can no longer handle all of the work which the DBMS software is

trying to accomplish.

The better DBMS is. the more users there are. Unfortunately. the increasing

strain which a growing database places on a computing system is not linear.

Response times increase drastically, and soon. running nondatabase operations

concurrently with DBMS becomes infeasible. Eventually. even running DBMS as

a standalone system becomes uneconomical.

One obvious answer to this dilemma is to go to larger. stand alone, comput-

ing systems for handling database functions. There is no reason to believe, how-

ever, that this is anything but a short-term solution. Databases will almost always

continue to grow. so the emphasis is once again on the need for the portable

DBMS software which can be moved from one system to another system.

Researchers in the area of database management are finding new ways to

improve the efficiency of the DBMS software. and reduce the strain that the

DBMS software imposes upon the mainframes called hosts. One current project.

is the multi-backended database system (MBDS). MBDS is aiming at meeting

both of these goals by placing the DBMS software on independent micro-

computers known as the backends which are connected to each other. and to their

9

host via a communications link. ince most processing with MBDS is on indepen-

dent computers. no real strain is placed upon the host computer. MBDS provides

for increased capacity without decreased performance (or increased performance

at the same capacity). by the addition of micro-computers.

MBDS places no restraint on either the host computer type. or the micro-

computer backend. There is also no restriction on the method used to establish

A the communications link. In order to provide this freedom. and since the system

is designed with the intention of migrating to various hardware configurations

(possibly at frequent intervals), the MBDS software must be easily portable.

Due to the great desire for portability in database software and the addi-

tional efforts by the designers of MBDS to achieve it. MBDS represents an excel-

lent example of methods which can be used to provide software portability. The
, .

. . methods used are applicable to the software portability in general, and to the por-

tability of the DBMS software in particular. As such. one implementation of the

MBDS design is used for discussion throughout this thesis. A complete descrip-

tion of MBDS design can be found in Reference 1 and Reference 2.

C. THE ORGANIZATION OF THESIS

Chapter II presents a paradigm for a software system, and describes the parts

of a computing environment. A discussion is presented on how the various com-

ponents of a software system (presented in the paradigm) interact with each part

of the computing environment. Also discussed are the effects that changing each

part of the computing environment have on the components of a software system.

In chapter III we describe the components of the multi-backended database

system (MBDS) according to the framework of our paradigm. The porting of

MBDS from one computing system to another is discussed, and the effects of the

10

. ,.

porting on the MBDS software components are presented. The actual

modifications which are necessary to port the MBDS software are presented in

chapter IV.

11

II. THE SOFTWARE-SYSTEM PORTABILITY

Before progressing with any discussion of how to achieve the portability of a

software system we must have some concept of what portability is, and what

comprises a software system. Only then can we correctly determine what the

issues are and their impact vipon the portability, and how these issues should be

approached and analyzed. Probably no two definitions of the software portability

exactly coincide, depending on the background of the person providing the

definition, and the scope of the problem at hand. However, there are some gen-

eral points that all of the different definitions are likely to agree on.

- The software-system portability is the ability of a software system to migrate
from one to another computing environment (i.e., hardware and operating system

combinations) with little, or no. changes of the software system required. Changes

which are required should be consistent and of a regular nature. so that these

changes can be accommodated, if possible. by some mechanical means.

Given this definition, we now must focus on what constitutes a software sys-

tem. Software systems can be designed for many different purposes. In order to

carry out their intended job they usually have various parts (some times hundreds

of them). each of which satisfies some specific requirement. There are usually sec-

tions for carrying out normal processing and for creating and manipulating data

structures. Most software systems also require access to device drivers to enable

terminal I/O or communication with other software systems, either within the

same computer or over some distributed network.

12

Regardless of the software system in question. its portability is not deter-

mined by what the software system is intended to do. or how many parts it has.

but by how the software system was structured. Therefore. the issues affecting

the portability are general to all types of software systems, since all of the

software systems have some structure. The concepts to be discussed do not vary.

nor does its basis. on whether the software system is a database system. operating

system, a compiler. or any other type of systems. In the rest of this chapter we

examine what those issues are. A case study on the portability is presented in the

next chapter, using the multi-backended database system (MBDS) as an example.

A. A PARADIGM FOR A SOFTWARE SYSTEM

In this section we present a paradigm for the structure and form of a software

system. This paradigm is based on the two types of components that are used to

construct a software system. They are system source code and operating system

commands. There are three types of system source code, namely,

* machine code,
* assembler code. and

9 high-level code.

Ope.ating system commands take the form of

* basic commands.

* command files, and

* utilities.

First. we investigate the system-source-code component. For each type of

code in the system-source-code component. our paradigm provides up to three

types of processing:

13

* basic processing.

* runt ime-environment processing. and

* translator-environment processing.

In the following discussion. we investigate the form that each of the three kinds of

processing takes for each of the three types of the system source code.

The machine code is just binary code written for the particular machine the

program runs on. The basic processing functions for machine code include opera-

tions such as add. subtract and store. There is no runtime-environment process-

ing. or translator-environment processing available with the machine code.

The assembler code. while it is at a higher level than the machine code. usu-

ally results in only a few machine instructions per line of the source code. The

capabilities at the basic processing]k -he assembler code parallel those of

the machine code. However. the asseniu., code allows logical names and per-

forms the automatic calculation of machine addresses. The runtime-environment

processing for the assembler code involves calls to the operating system for per-

forming such functions as reading characters from files. or obtaining the current

date and time. Assemblers generally do not provide any translator-environment

processing capabilities.

The high-level code refers to compiler languages uch as (or Pascal. For the

high-level code. basic processing capabilities include mathematical operations. log-

ical comparisons, and assignment of values to logical variables. They also include

all those statements in the language which we call the runtime-environment pro-

cessing or translator-environment processing. The runtime-environment-

processing capabilities include operations such as reading and writing files.

dynamically allocating the memory and providing calls for communicating with

other software systems. The high-level calls to be carried out by the operating

14

system constitute the runt ime-environmen, processing. The translator-

environment processing is any function that it carried out by library routines

which are provided as a part of the translator and incorporated into the software

system at the link time. Included in the translator-environment processing are

operations such as floating-point arithmetic, computation of trigonometric values

and manipulation of character strings.

Now let us consider the operating-system-command component of a software

system. The basic operatirig system commands include those for compiling,

assembling and linking the source code of all types (i.e., machine, assembler and

high-level); and for deleting, copying and renaming files. Command files are lists

of basic processing commands which automatically execute. in sequence, or

according to some programming logic dictated by the operating system. The util-

ities of the operating system are prewritten command files which are included as a

part of the operating system. Utilities may perform logically complex operations

and are designed to aid in the implementation and management of large software

systems. Included in these are system libraries and implementation aids such as

version control systems and file-creation utilities.

We should take the time here to note an important point. While all of the

code is eventually translated into the machine code and runtime libraries may

make calls to the operating system. neither of these directly affects the portability

of the software. The issues are what types of the system source code that the

softwarle system is written in. and which types of processing are performed. These

are what determine the portability of the software system.

15

B. TYPES OF PORTING

We have defined the porting as the movement of a software system form one

computing environment to another. There are three parts which make up a com-

puting environment,

" the hardware.

" the operating system, and

" the translator (in the case of the assembled or high-level code).

A software system may be ported by changing any of the three parts of the com-

puting environment. Each of these changes has a different impact on the software

system being ported. There may of course be changes to several items at once.

For example, a change of operating systems usually requires a change of transla-

tors as well. since most compilers are written to run on a particular operating sys-

tem. We now use the paradigm we have created to examine the effects that each

type of porting has on a software system.

1. A Change of the Hardware

For any software system. the most profound effects of changing hardware

are in the system-source-code component. Any portions of a program written in

the machine code obviously are affected by a change of the hardware. Unless the

new hardware used allows for the emulation of the original machine, all machine

code must be rewritten. The assembler code usually must be redone as well

because it is so closely tied to the structure of the underlying machine.

The high-level code usually does not have to be redone due solely to a

change of hardware as long as that new hardware supports a compatible version

of the original operating system and that a compiler is available for the high-level

language in question. However, this is not always the case. If the high-level

16

language is not widely used (e.g.. BLISS. then there might not be a compiler

available -with a code generator for the new machine.

Operating-system commands are not affected by a change of the

hardware alone, since two versions of an operating system running on two

different sets of hardware can usually be expected to provide the same functions.

Thus, in the case of a hardware-only change, the type of code used (machine.

assembler, or high-level) is what determines the changes to be made to the system

source code. There is usually no affect on the operating-system-command com-

ponent of the software system.

2. A Change of Translators

Changing the translator only has an effect on the assembled and high-

level code in the system-source-code component (the machine code does not use a

translator). The kinds of processing which the code (assembled or high-level) per-

forms affect the changes which have to be made. Necessary changes to the code

which accomplishes the basic processing are determined by the degree of the

language's standardization.

In addition to intentional design differences there is a question of

whether a particular translator correctly implements the intended language. For-

mally validating compilers for modern high-level languages is not possible. Most

commercial compilers are subjected only to some series of empirical tests. If

minor differences from the defined language are detected. manufacturers may

decide to document the deviations, rather than pay the expense of trying to

correct them. These deviations may affect how well a software system reacts to a

new compiler.

Even if the syntax of a language is standardized, changes may be

required in portions of the code which do the translator-environment processing.

17

The runtime libraries provided by the compiler suppliers are not always the same.

A good example of this is Pascal's string manipulation routines. While the

language itself does not define string types. almost all implementors include them

as an extension to the language. However. the format used by each is not stand-

ardized and often differs among compilers. While the old and new translators may

both provide functions that have the same name and take the same parameters.

there may be logical differences in how each of them implements these functions.

If these functions perform critical operations in the software system. it may be

desirable to avoid the runtime-environment processing whenever possible and

write your own routines instead.

For the system-source-code component of a software system. the changes

necessitated by a change of translators is determined by the type of processing

done by the code. There is usually no effect on the operating-system-command

component of the softwar" 3ystem.

3. A Change of Operating Systems

It is the operating system which provides the major functionality in a

computing environment. A change of the operating system therefore is the most

drastic kind of porting. Porting software to a new operating system may affect

the assembler-code and high-level-code portions of the system-source-code com-

ponent. The machine code (which relies only on the underlying machine) does

not have to change. The most direct effects of changing operating systems are to

those code sections which do the runtime-environment processing. If the new

operating system does not provide equivalent functions for those operations. it

may become necessary to redesign the logic of entire sections of the code.

The portability of a software system may also be complicated by the fact

that a change of operating systems requires some changes to the translator which

18

~ ~ KOM& % V

the software syVstem ha-- used. This subject! the software system to all of the pos-

sible changes it would have to undergo for any other change of translators.

Therefore. changing operating systems has an indirect effect on the code which

does the translator-environment processing and, possibly, the basic processing as

well.

Changing operating systems obviously affects all parts of the operating-

system-command component of a software system. Basic commands (e.g.. com-

pile, link, search. etc.) are almost always supported in some form by the new

operating system: command files usually are available as well. Therefore, the

changes required by these commands are a matter of substituting the new formats

for the old. The greatest difficulties arise if operating-system utilities have been

utilized and the equivalent utilities do not exist in all operating systems. When

they do exist. their formats may not be at all similar. In either case, an extensive

restructuring may be necessary to maintain the sofiware.

The porting to a new operating system may require major changes to

both components of a software system. In the system-source-code component. the

assembler and high-level code may have to be changed. These changes may affect

the code which does any of the three types of processing. For the operating-

system-command component, a major rewriting is usually necessary for all three

forms of operating-system commands.

19

4 .

III. THE IMPACT OF THE MBDS DESIGN ON PORTABILITY

In this chapter we present a case study of the porting of a particular software

system from one computing environment to another computing environment.

Our description of the software system that was ported follows the structure of

the paradigm presented in the previous chapter. The description of the actual

porting also follows the format we presented in the previous chapter (i.e.. describ-

ing each part of the computing environment which changed and how the change

affected each component of the software system that was ported).

The software system that was ported for our case study is the multi-

backended database system (MBDS). MBDS is a database system (for very large

databases) that was developed for research purposes at the U. S. Naval Postgra-

duate School. The basic premise of MBDS is to distribute the work of the data-

base system across several different micro-computers. MBDS uses one computer

as the system controller, and several other computers (at present, eight) as back-

ends to accomplish the majority of the required database-manipulations. There

are two reasons why MBDS was chosen for our case study: 1) MBDS has been

ported successfully twice since its initial implementation. and 2) the MBDS

designers have established portability as a high priority since the initial inception

of the MBDS project. Including the first implementation. MBDS has been run in

i three different computing-environments. Among the three computing-

environments, there have been four different hardware configurations (MBDS uses

more than one computer per environment), and five different operating systems.

20

To attain a portable software Sy-STem. the designers of .MBDS strived to

develop the MBDS software s6 that it contained a high degree of hardware and

operating-system independence. By engineering MBDS with a minimum amount

of dependencies, they greatly enhance the probability that the software system

would be easily transportable to new. and varying, hardware/operating-system

configurations.

To develop a highly portable database system. the designers of MBDS first

identified which portions of the database system software are dependent on either

the hardware and/or the operating system. They identified two classes of data-

base system software which are dependent. namely. communications software and

disk input/output software. Communications software is used by the database

system to communicate among different computers and to communicate within a

computer. referred to as inter-computer and intra-computer communications.

respectively. The communications software is often affected by a change of the

operating system (since communications protocols are operating-system depen-

dent) and is also affected by a change of the hardware (since specialized commun-

ications drivers are hardware dependent). The disk input/output software is used

by the database system to access and process information from the secondary

storage. The disk input/output software is also affected by a change of the

operating system (since it is operating-system dependent) or by a change of the

hardware (since it is dependent on specialized disk drivers).

In general, there is no way to avoid a certain amount of hardware and

operating-system dependencies in a database system. Instead. MBDS was

developed with techniques which can minimize the effect of changes. There are

two distinct approaches to accomplishing this task. First. MBDS uses the con-

cepts of abstraction and encapsulation to isolate the dependencies of the

21

communications and disk input/output software. The database system ,-oftware

makes calls to these high-level routines that are dependent on the programming

language used in the software system. when there is a need to access the svstem-

dependent software. These calls are generic. e.g.. send[niessage. destination>.

receive[message. sender], do disk io[data, device]. They represent abstractions of

the actual functions. The routines themselves (i.e.. send. receive, and do disk io)

are used to encapsulate the system-dependent software. Second. the designers

used the concept of a virtual interface to develop independent software for com-

munications and disk input/output. The aim of the virtual interface is to utilize

abstractions provided by the compiler to accomplish a particular task. These

abstractions are usually in the form of library routines for the programming

language. As these library routines are supported by different compilers under

different operating systems. it is easy to transport the virtual interface from one

operating system to another.

MBDS has utilized the abstraction and encapsulation concepts. as well as the

creation of a virtual interface. Abstractions and encapsulations are used by the

MBDS communications software to provide high-level calls to send and receive

messages both among and within computers. Since MBDS is a message-oriented

system, all of the inter-computer and the intra-computer communications are

accommodated by the abstractions and encapsulations. These techniques are also

used by the MBDS disk input/output software to provide a high-level interface

for reading (writing) information from (to) the secondary storage. In addition.

the MBDS designers also created a virtual interface for disk input/output

software. The virtual interface depends on the programming language constructs.

and is used to provide a high-level, operating-system-independent paradigm for

performing disk input/output via text files.

22

KAkLXS

In the next section we take a closer look at the construction of .NMBD accord-

ing to our paradigm of a software system. An in-depth description of the %IBD;

design can be found in Reference I and Reference 2. descriptions of the implemen-

tation of MBDS can be found in Reference 3 and Reference 4.

A. THE MBDS COMPONENTS

The system-software component of MBDS contains only high-level code

(there are no sections of machine code or assembler code). This has greatly

enhanced the portability of the MBDS software system. The MBDS high-level

code (written in the C programming language) performs all three types of process-

ing contained in our paradigm (i.e., basic, runtime-environment and translator-

environment processing).

The basic-processing operations of MBDS are the normal C language con-

structs which would be found in any C program (e.g.. for-loops. while-loops, if-

then-else statments. etc.). These basic-processing operations carry out the major-

ity of the processing in the MBDS software. We have stated in the previous

chapter that portions of the system-source-code component which are written in

high-level code and perform basic-processing operations are inherently portable.

Therefore, the majority of the MBDS software system is inherently portable. The

portions of MBDS which do runtime-environment-processing are those sections of

high-level code which perform inter-computer communications. intra-computer

communications, disk input/output and system-timer operations.

Translator-environment-processing operations in MBDS are performed by

function libraries provided with the C compiler. They consist essentially of rou-

tines for performing terminal input/output and routines for the extensive

character-string manipulations which the MBDS software performs. MBDS also

23

perfornis some disk input/output at this level, when deahng with fiie- used fbr

execution-trace information and user input. All of the manipulation of the

database-files is done at the runtime-environment processing level, under the guise

of abstraction. encapsulation and virtual interface techniques.

The system-software component of MBDS consists of over eighteen-thousand

lines of C code. In order to implement and manage such a large software system

the designers of MBDS make extensive use of the operating-system-command

component of MBDS. Operating system command-files are used to gather the

required system-source-code files in one place. compile and link them into execut-

able files, relocate all executable files in one area for later execution. and then

erase any intermediate (temporary) files which are no longer needed. In addition.

since the MBDS software system consists of multiple processes running across

several computers (usually five processes per computer). command files are util-

ized to initially start the system in an orderly fashion.

B. PORTING THE MULTI-BACKENDED DATABASE SYSTEM

This section discusses the actual changes made to the MBDS computing-

environment each time MBDS was ported. and the effects that each of those

changes had on the MBDS software. Each time MBDS was ported. changes were

made to both the hardware and the operating system at the same time (the com-

piler also changed. because of the new operating system). For the sake of clarity.

each of these changes is discussed independently.

1. Changing the MBDS Hardware

MBDS has had three different hardware configurations. the first

configuration is the original. The controller for MBDS is a Digital Equipment

Corporation (DEC) VAX-11/780. The backends are two DEC PDP-11/44s. For

24
.. 2

4-.*

the database store. each backend utilizes a 67-megabyte RN03 disk drive. Inter-

computer communications is accomplished using the point-to-point parallel com-

munications link (PCL). a 0.5-megabit bus. Three PCL's are utilized, one from

the controller to the first backend, one from the controller to the second backend

and one between the two backends.

In the second configuration the controller for MBDS is a DEC VAX-

11/750, the backends for MBDS are eight Integrated Solutions Incorporated (ISI)

Motorola 68020-based workstations. For the database store, each backend utilizes

a 500-megabyte Control Data Corporation (CDC) winchester-type disk drive.

Communications is accomplished using an Ethernet. All computers (both con-

troller and backends) share the same Ethernet.

For the third configuration, the controller for MBDS once again is a

DEC VAX-11/780, while the backends are upgraded to DEC MicroVax-Ils The

communications bus is also upgraded to a DELNI. with DECNET providing the

networking software interface. Each backend has a 71-megabyte DEC

winchester-type disk drive.

Since all of the MBDS software system consists of either high-level

system-source-code or operating-system-commands. we can expect that no

changes would be required to the software solely because of a change of the under-

lying hardware. That is in fact what happened. In both cases. where MBDS was

moved from one piece of computing hardware to another. no changes had to be

made to the MBDS system-source-code (as a result of the hardware). There were

also no changes required the operating-system-command component of MBDS.

2. Changing the MBDS Source-Code Compiler

A change of compilers was experienced by the MBDS high-level code (by

circumstance) each time a change of operating systems was made. In the original

25

.IBDS configuration the DECU'S C compiler was used for 1 igh-level code which

was developed on the PDP-11/44 computer (using the RSX-11/M operating svy-

tern). For code that was developed on the VAX-11/780 computer (using the

VM"\,S 3.7 operating system) the EUNICE C compiler was used (EUNICE emulates

a UNLX environment on the VMS operating system). For the second MBDS

configuration. the UNIX C compiler was used for high-level code on both the

VAX-11/750 (using the UNIX 4.2 BSD operating system) and the ISI worksta-

tions (also using UNIX 4.2 BSD). In the third version of MBDS the DEC C com-

piler on Micro-Vax IIs was used (using the MVMS 4.1 operating system). This

same C compiler was used to develop high-level code for the VAX-11/780. Since

executable-code generated for the Micro-Vax II computer is upward compatible

with the VAX-11/780. it was possible to develop high-level code for the Vax-

11/780 on the MicroVaxs and then copy across the executable files. This avoided

any risks of using yet another C compiler, and avoided using the VAX-11/780 for

development purposes (since the VAX-11/780 was used for other purposes in

addition to the MBDS research).

Changes to system-source-code (as result of changing compilers) would

normally be expected in sections of code which perform translator-environment

processing. However this was not the case with the MBDS software. there were no

changes required for code which performed translator-environment-processing.

This is probably because the origin of the C programming language is closely tied

to the UNIX operating system. Therefore. most developers of C compilers (for

any operating system) provide compiler libraries which are copies of the original

UNIX C compiler library.

There were some changes required in the MBDS high-level code which

performed basic-process operations (as a result of the new compiler). These

26

changes were required when the MBDs software was ported from the second to

the third versions (i.e.. from the UNIX C compiler to the DEC C compilerL.

Though the actual changes required were simple (and were needed in less than

twenty lines of C code). the time required to determine the cause of the problem

was considerable.- Both compilers accepted the source code (they just interpreted

it differently). so there were no error massages produced at compile time. Indica-

tions of the compilers' differences did not appear until the new executable files

were run and the new versiori did not work! Keep in mind that a new compiler

was not the only change which had taken place. This, along with the fact that no

problems had arisen from previous compiler changes. and that the problems were

in sections of code which performed basic-processing (the least probable area).

served to create a difficult debugging problem.

The difficulties apparently resulted from differences in the way the two

compilers assigned precedences when multiple C language operators appeared in

one line of code (the C programming language allows certain short hand coding

constructs to save typing time). The only changes needed were to remove these

short-hand lies of code. and rewrite them in a manner similar to the way they

would be written in any other high-level language (e.g.. Pascal). From a software

engineering point of view. the short-hand coding techniques should have been

avoided anyway. since they tend to be very cryptic. making the resulting source

code difficult to read and maintain.

3. Changing the MBDS Operating System

Portions of the MBDS software ha e run on five different operating sys-

tems. In the original MBDS configurations the controller used the DEC VMS 3.7

operating system. while the backends used the RSX-11/M operating system. For

the second version of MBDS, both the controller and the backends used the UNIX

27

4.2 BSD operating system. In the third version of MBDS. the VMS 4.2 operating

system was used for the controller, with .MV.MS 4.1 running on each of the

backends.

As was stated in the previous chapter. a change of operating systems is

the most drastic kind of porting for any software system. The MBDS software

changes required as a result of a new operating system accounted for the vast

majority of work needed, both in terms of time spent and percent of the MBDS

software which had to be modified. While all of the MBDS system-source-code

which performed runtime-environment-processing had to be modified, the changes

were isolated to just a few source files. This was a result of the abstraction and

encapsulation techniques used by the MBDS designers. Therefore. it was easy to

predict the majority of the changes which must be made to accomplish the

porting.

Some minor changes must be maae to sections of the MBDS code which

performed system-timing operations. These changes consisted mostly of changing

the names of functions which wer(. called (from operating system libraries), and

rearranging the order of some parameters to those functions. The majority of the

system-source-code changes must be made in the sections of code which perform

communications.

For the original version of MBDS three different methods of communica-

tion were used depending on whether the need was for inter-computer communi-

cation. intra-computer communication in the controller. or intra-computer com-

munication in a backend. Inter-computer communication was accomplished using

a point-to-point parallel communications link. In the backends. intra-computer

communication (under the RSX-11/M operating system) was accomplished with

shared memory techniques. For the controller. intra-computer communications

28

N % %

iunder the VNMS 3.7 operating system) were performed using V.MS mailboxes.

When the MBDS software was ported To the UNIX operating system none of

these communication techniques existed.

Under the UNIX operating system, all communication (inter-, and

intra-computer) was accomplished using UNIX sockets. This meant that all code

which performed the communications had to be changed. Due to the virtual-

interfaces which MBDS had set up. these sections of code were again isolated to

just a few source files. There was also the advantage that the virtual-interfaces

could accomplish all three types of communications with just one low-level driver

(UNIX sockets). However. when the third MBDS version was implemented it did

not use UNIX. so all the communications drivers again had to be changed.

The third version of MBDS used VMS mailboxes (like version one's con-

troller) for intra-computer communication in both the controller and the back-

ends. This meant that the source code which had been used in version one's con-

troller could be used (virtually unchanged) for version three's controller. In addi-

tion. it could be used for the backends as well (with only minor changes). Inter-

computer communications in the third version of MBDS were accomplished using

DECNET. Since this technique had not been used in any previous MBDS ver-

sions. entirely new communications drivers must be written. The virtual-interface

techniques again isolated the changes to just a few files.

The operating-system-command component of MBDS was rewritten each

time MBDS was ported to a new operating system. There are in excess of twenty-

five command-files used to manage the implementation of the MBDS software.

So. while the required changes were mechanical in nature, they required a great

deal of time to accomplish simply because of the number of files which were

changed. Even though the controller for version one of MBDS ran on the VMS

29

operating system (like the controller and backends of version three). the controller

software only represents about twenty-five percent of the MBDS software. There-

fore. while some of the command files from version one could be used in version

three (with minor modifications). there were still a great many command files

which were rewritten.

30

IV. A CLOSER LOOK AT THE MBDS PORT

In this chapter we discuss the steps necessary to transform MBDS version

two into MBDS version three. We examine the porting process in a chronological

order, essentially presenting a journal of the activities used to move the software.

A separate detailed discussion is presented of the changes made to the MBDS

communications software (which underwent the greatest changes). First. lets look

at the sequence of events used to accomplish the porting.

A. THE SEQUENCE OF EVENTS

Porting the MBDS software from one system to another has entailed several

distinct phases. The major milestones in the sequence are as follows:

* transfer the MBDS files (of source-code and operating-system commands)
from the old computing system to the new one.

* modify the operating-system-command files used for compiling the MBDS
software.

9 compile the source-code files and correct any compile-time bugs which
appear.

* modify the MBDS intra-computer communications software, and implement
an intermediate version of MBDS with a controller and one backend. both
running on the same computer,

* perform run-time testing on the intermediate system to ensure the actions of
the implementation are logically correct (according to the MBDS design),

* modify the MBDS inter-computer communications software to implement
the final version (MBDS version three).

* confirm the actions of the final version are logically correct.

While some of these phases overlap to some extent. the porting sequence is clearer

if they are considered separately.

31

I

The files of source-code and operating-syseii-comniand which comprise

MBDS (version two) exist on one of the ISI workstations. The first step in the

porting process is to copy all of the files to one of the Micro-Vaxs. where the

development of MBDS version three has been accomplished. Since the computing

systems for both versions of MBDS are connected to a common local-network, the

files are copied using the standard communications utilities available.

Once the are were on the new system. the next step is to convert the

operating-system-command files. Since the command files are needed to manage

the compilation of the MBDS source-code. their conversion must take place before

the compilation of the system begins. Each implementation of MBDS contains

six independently executed programs (or processes) for the controller and five

independent programs (or processes) for each backend. There is a set of com-

mand files for each of the independent programs. One command file in the con-

troller source-code (and one in each backend) may call all of the subordinate com-

mand files. and in this way the entire set of MBDS processes can be created from

the top level. The total number of command files for the controller and backends

(in version two) is approximately twenty-five.

The command files in MBDS version two are UNIX makefiles. These have a

capability for tracking which source-code files have been modified (and which

have not) since the last time a program's source-code files are compiled and

linked. Makefiles also allow the programmer to state which source-code files are

dependent on other source-code files. Through makefiles. only modified source-

code files are recompiled. and they (and files dependent on them) are relinked.

Some of the MBDS processes require over thirty-five source-code files, and each

shares some common source-code files with the other MBDS processes. Therefore.

32

the management of the .[BDS software i- ea-ier. and modificaTions can be acconi-

plshed faster. when makefiles are used.

Version three of MBDS uses the VMS operating system which does not have

a makefile utility available. The VMS operating system provides command files.

*but they do not have the capability of tracking source-code modifications and

dependencies. Therefore, to use command files for managing the implementation.

not only must all of the makefiles be rewritten but the logic of their organization

must also be changed. This means that MBDS version three requires over fifty

command files to manage its implementation, more than twice the number of

makefiles used by version two. Program modifications also take longer since it is

easier to recompile and link all source-code files needed for a program (even

unmodified ones), than to manually keep track of which have changed and what

files are dependent on them.

In order to avoid the problems caused by not using makefiles. an initial

attempt has been made to utilize the EUNICE environment (on the VAX-

11/780). In EUNICE (a software system that emulates UNIX) makefiles can be

used to compile programs which run on the VMS operating system. However.

while the programs run on the VAX-11/780 (with VMS) they prove to be not

downward-compatible to the Micro-Vaxes. which are used for the MBDS back-

ends. (The Micro-Vaxs are designed to be upward-compatible to the VAkX-

11/780. but not vice versa.) Therefore. the makefiles had to be redone as com-

mand files.

The MBDS command-files are converted one set at a time. as each set is

converted an attempt is made to compile the MBDS process. While it is known

(because of the MBDS design) which files need changes. there is a desire to see if

any unexpected compile-time errors might occur. No compile-time errors emerged

33
/7)

some u'arfling messages have been generated because of variable name. which con-

tain too many characters. These are truncated by the compiler but do not cause

any problems (the truncated length happens to be long enough to maintain

uniqueness). Once each of the processes is compiled, what essentially exists is a

version of MBDS with program segments executable on the VMS operating sys-

tem. but still only able to communicate with each other using the UNIX commun-

ication facilities. Obviously. the next step in the porting is to modify the source

code which performs communications.

As we stated in previous chapters. MBDS performs two types of communica-

tion. intra-computer and inter-computer. With the UNIX operating system (used

by MBDS version two) both types of communications are accomplished in the

same manner. The VMS operating system (used by MBDS version threel uses

different means to accomplish each of the two types of communication. The deci-

sion is made to modify the MBDS communications software in two phases. In the

first phase. an intermediate version of MBDS is created which utilized only one

computing system, supporting both the controller and one backend. From a func-

tional point of view. the controller and each of the backends does not know where

the other components are executing.

Since the intermediate version only used one computer. there is only a need

to modify the intra-computer communications at that point. Version three of

MBDS uses VMS mailboxes for intra-computer communications in the controller

and backends (like the version one controller). For the intermediate version. the

sections of code which normally perform inter-computer communications can call

the same virtual communication interfaces as the intra-computer communications.

When an attempt is made to test the intermediate MBDS version the first

unexpected problems arise. After a considerable debugging effort the problem is

34

*~~~~*X -A*~'~p ~'

isolated to three lines of source code. The problem is i.,olated in the sense that iT

is known to occur in a particular line. but it is not obvious why it occurred. Bv

all observations the code is correctly written, and it has functioned properly, as is.

in version two. Eventually, it is suggested that the code might be correct to the

human observer but is being incorrectly interpreted by the compiler. The lines of

code in question use some short-hand coding techniques. which has apparently

complicated parsing them. The lines of code causing the problem looked like this

(the problem areas are in bold):

while (msgq[(*index)) '= 0)

data[j++] = msgq[(*index)++]:

data[j] = msgq[(*index)++];

They are modified, to remove the short-hand techniques. resulting in the code

shown below (note the need for two additional lines of code):

i = *index;

while (msg_q[i] != 0)

datalj++] = msgqli++]:

data[i = msgq[i++]:

*index = i:

Once these changes are made the section of code functions properly, similar

changes are needed in three other sections of the source-code. These are the only

changes that have been required to get the intermediate version of MBDS working

N. properly.

The next step is to modify the inter-computer computer communications.

Since the UNIX version does not have separate interfaces for inter-computer corn-

munications. these are not actually modifications. Instead. entirely new interfaces

35

must be created for V.Ml- inter-computer communications. MBDS version three

uses DECNET software to perform the inter-computer communication. These

interfaces (as well as the ones for the VMS inrra-computer communication) are

discussed further in the next section. After the inter-computer communication

interfaces are completed the only task remaining is to perform some final testing.

No additional modifications are necessary to create MBDS version three.

B. THE MBDS COMMUNICATION INTERFACES

Before proceeding further with any discussion of modifying the MBDS com-

munication interfaces, we first present a general overview of the MBDS software

architecture and how it utilizes the communication interfaces. As we have stated

before. each MBDS implementation has a controller and one or more backends.

The controller is comprised of six processes, and each of the backends has five

processes. In a normal implementation the controller (i.e., its six processes) is run

on its own computing system, there is also a separate computing system for each

backend. Since each process is an independently run program it has no direct

connection to any other process. yet the processes must pass messages (informa-

tion and data) to each other for MBDS to operate. Within each process there are

the virtual interfaces for sending and receiving messages. it is these send and

receive routines which must actually be modified whenever MBDS is ported. The

send and receive routines only perform the intra-computer communication.

Of the six processes in the controller only four are needed by MBDS for data-

base operations, the other two processes are used for inter-computer communica-

tion. The same is true for each backend. that is. only three of the backend

processes are used for database operations. the other two are for inter-computer

communication. These processes (in the controller and each backend) operate as

36

- '-

the virtual interfaces for inter-computer communication To avoid confusion witi,

the intra-computer interfaces we call these processes get-net and put-net (as

opposed to send and receive). Excluding the get-net and put-net processes. all

MBDS database-processes perform only intra-computer communication. The

pseudocode for any MBDS database-process (at a very high level) looks like this

While MBDS is operating do

Receive a message
Perform any required processing
Send any required response

From looking at the pseudo code you might wonder how messages ever get from

one backend to another. or from a backend to the controller. The answer is in the

last line of the pseudo code. the key word is required. The required response may

mean sending a message to more than one other process. if one of those processes

is the put-net process then the message eventually goes to a process on another

computing -system. Therefore. the pseudocode for the put-net process looks like

this:

While MBDS is operating do

Receive a message
Put it to the appropriate process

The appropriate process to which a message is put is always a get-net process on

another computer system. The pseudo code for a get-net process looks like this:

While MBDS is operating do

Get a message
send it to the appropriate process

Now lets examine how the MBDS intra-computer communication interfaces send

and receive) have been modified to operate under the 'VMS operating system.

37

1. Modifiving the Intra-Computer (oiixiunicatioII-

The controller for MBDS version one uses the same VAX-11/780 as the

controller for MBDS version three. While version one runs on VMS 3.7 and ver-

sion three runs on VMS 4.2. the intra-computer communication facilities provided

by the two VMS releases are the same. Therefore, the MBDS version one con-

troller communication interfaces can be used for the MBDS version three con-

troller without modifications. and can be used for the version three backends with

only minor modification.

In the VMS operating system, intra-computer communication is accom-

plished with VMS mailboxes. These mailboxes are virtual devices which can be

created through the operating system. When a program calls the operating sys-

tem to create a mailbox. the program must specify a logical name to be assigned

the mailbox. The operating system then creates a mailbox. with the specified

logical name, and pro--ides the program with a logical channel to the mailbox.

Once a mailbox is created messages may be put into it (or taken out of it) by

writing to (or reading from) the logical channel provided by the system. If a call

is made to the operating system to create a mailbox with a logical name that has

already been used. no new mailbox is created. the operating system just provides

another logical channel to the already existing mailbox. This is how different

processes on the same computer can communicate. If several processes all use the

same logical name in a create-mailbox call to the operating system, then they all

share the same mailbox.

The MBDS intra-computer communication (using mailboxes) is accom-

plished by having each process in the controller (or backend) create a mailbox

with its own logical name. and mailboxes with the logical names for each of the

other processes in the controller (or backend). The logical names are standardized

38
4

for all controller (and backend) processes. A we have said. if the same logical

name is used more than once. multiple mailboxes are not created. Rather. only

multiple channels tothe mailbox with that logical name are created. Therefore.

when all processes in the controller (or backend) have finished with their create-

mailbox calls. there is one mailbox for each process in the controller (or backend).

Each process has a logical channel to its own mailbox. and logical channels to the

other processes' mailboxes. The protocol that MBDS uses to make this scheme

work is that processes can ofily read their own mailboxes, and can only write to

other processes' mailboxes. There is no need to write to their own. or read from

any one elses.

The MBDS version one controller's intra-computer communication

software is used without changes for the controller in MBDS version three. To

create the version three backend intra-computer communication software, it is

only necessary to use a copy of the controller software with the controller logical

names (for the mailboxes) changed to backend logical names.

To create the intra-computer communications software for the inter-

mediate MBDS version (i.e.. where the controller and backend run on a single

computer together). one additional (temporary) change is made. An additional

mailbox is created for the get-net and put-net routines in the backend and the

controller. (Actually. only additional channels to existing mailboxes are created.)

Normally, a controller process only has channels to mailboxes for controller

processes. and batkends only have channels to backend processes. For the inter-

mediate version, put-net in the controller had a channel to get-net's mailbox in

the backend. and vice versa. This allowed the get-net and put-net routines to use

the same virtual interfaces that are used by the send and receive routines (which

perform all of the intra-computer communication). For the final version of

39

MBDS (version three). put-net and geT-net no ionger use mailboxes for communi-

cation. This is because the VMS operating system does not allow logical channels

to be established to a mailbox in another computer.

2. Creating the New Inter-Computer Communications

MBDS version three. like version two. uses Ethernet communication

hardware to connect the controller to the backends (and the backends to each

other). However, from a functional viewpoint, MBDS version three's inter-

computer communication software operates more like MBDS version one (which

used point-to-point communication hardware). This is because the way DECNET

(VMS) communication software operates it does not provide a broadcasting capa-

bilitv. DECNET is the operating system software used for the version three inter-

computer communications.

S In the UNIX (Ethernet) environment all processes that wish to commun-

icate simply associate themselves with the network, each process then has a logical

communication link with all of the other processes that are associated with the

network. (This is much the same as when processes under VMS associate them-

selves with a common mailbox, for intra-computer communication.) However. in

the DECNET (Ethernet) environment each process must establish a separate logi-

cal link for every other process it wants to communicate with. therefore. this is

essentially (softwar.e) point-to-point communication.

When using the DECNET software, all processes which communicate

with each other are either source processes, or target processes. A source process

is one that initiates a request to establish a communication link with another

,* process. the target process is the one that receives the request. A given process can

be the target for a communication link with one process. and the source for a

communication link with another. The DECNET software requires that a target

40

S~SS~%

SS 2~-~ 5%S'E~S

process is in execution before its source process requests the communication link.

A requirement like this does not exist for inter-computer communication in

MBDS version one. or version two (nor does it exist for intra-computer communi-

cation. in any version). Therefore. the logic for the put-net and get-net processes

in version three must be completely changed.

In order to establish, and maintain, communication under the DECNET

software the get-net and the put-net processes must operate under the following

constraints:

* any process which is a.target must be executing before its source process
attempts to establish communication,

• if a process is to have multiple communication links, where it is a target in
some cases. it must be capable of maintaining communication on established
links, while still waiting for (or accepting) any links where it is the target,

" a target process must inform the operating system (through DECNET) of
the network name it is using, so that DECNET can properly route connec-
tion requests,

" a source request must know the network name for all of its target processes.
and it must know the name of the computer (the nodename) that each tar-
get executes on.

" a process must know the total number of communication links it should
have. how many it is ; target for. and how many times it is a source. (This
is because MBDS conngures the number of backends to be used. on-the-fly.
when it is started.)

Now let us review how the get-net and the put-net routines for MBDS version

three were organized to meet these criteria.

In the MBDS controller, both the get-net and the put-net processes are

always source processes. Therefore. when MBDS is initially started. the controller

processes are executed after all of the backend processes are executed. This

satisfies the target/source ordering for the controller-to-backend communication.

As soon as the controller is informed (by the user) how many backends are to be

used the get-net and the put-net routines can begin establishing (requesting) com-

munication links. Since the controller (get-net and put-net) communication

41

routines are never targets. they do not have to inform DECNET of any network

names (they do not- need network names). Also. since they are never targets. they

do not have a requirement to accept a connection request while communicating

(they never accept connection requests). When requesting the communication

links, get-net and put-net know the names of the processes they communicate

with because the MBDS process names are standardized. In order for them to

know the computer systems (nodenames) that the backends are executing on. the

nodenames are standardized as well.

Each nodename consists of a character string that ends with a number

(e.g.. CSMV1. or CSMV2). only the numbers at the end are different. The con-

vention used by MBDS is that, if only one backend is used. it is on the computer

with the lowest nodename (i.e.. CSMV1). if multiple backends are used they are

on the computers with the lowest consecutive nodenames (e.g.. for three backends:

CSMV1, CSMV2. and CSMV3). As soon as the controller routines know the

number of backends, they can construct the proper nodenames.

For the MBDS backend-to-backend, inter-computer communication the

backend get-net processes are always targets. and the backend put-net routines

are always the source. Remember that backend put-net processes are targets for

controller-to-backend communication, they are the only processes which perform

both as targets. and sources. depending on the situation. Since there is always a

single controller, the backend put-net process knows it is a target for a single com-

munication link. The backend put-net process does not begin requesting links

(acting as source) to the other backends get-net processes until after it has

received its first message from the controller. By convention, this first message is

always the number of backends to be used. The put-net process then knows how

many communication links it must have. and where it is the source. The put-net

42

U '--

process forwards this message (using the intra-conipuTer communication) to its

respective get-net process and then the get-net process knows how many times it

must act as a target for a communication link. The backend put-net routines

determine nodenames (for the other backends computer systems) in the same

manner used by the controller. When the backend get-net and put-net routines

are first executed, they inform DECNET of the (standardized) network names

that are being used.

Because the backend communication processes (get-net and put-net) act

as target tasks with multiple communication links, they must be capable of main-

taining the communications on any established links while waiting for (or accept-

ing) connection requests. They accomplish this by using VMS mailboxes. these

are the same types of mailboxes used for intra-computer communication. How-

ever. in this case. the mailboxes are not used for MBDS messages, but are used for

DECNET status information. When a process uses DECNET to perform com-

munication it establishes a logical link to DECNET. This is in addition to the

logical links for the other processes that it communicates with. Any time a pro-

cess establishes a logical link. the process has the option of associating a mailbox

with that logical link. One mailbox may be associated with multiple links.

If a communication link has a mailbox associated with it. DECNET

places network status messages (about that link) into the mailbox. These status

messages may include information such as the fact that DECNET has a connec-

tion request for a process. the fact that an established link has received a message.

or the fact that a process on the other end of a communication link has discon-

nected itself. Therefore. the backend communication processes can handle multi-

ple links by associating a single mailbox with all of their communication links.

Each time the process completes an operation (e.g.. putting a message. getting a

43

message. or accepting a connection request) it then reads its mailbox. The next

message in the mailbox determines what operation the process must perform next.

DECNET automatically queues multiple messages in the mail box. If a process'

mailbox is empty the process waits until a message arrives, that is. an empty

mailbox means there is nothing else for a process to do.

Mailboxes are used for managing multiple connections by all of the

MBDS inter-computer communication processes which act as targets. or as

message-receiving processes. Therefore. the put-net process in the controller is the

only one that does not need a mailbox to manage its communications (it is never

a target. and only puts messages). By convention, any time a process puts an

inter-computer MBDS message to another process it also puts a DECNET

notification message to the same process (these are optional with' DECNET. and

not generated automatically). The MBDS message goes on the logical communi-

cation link, and the notification message is placed- (by DECNET) into the mailbox

for that communication link. at the receiving process. If the DECNET

notification message were not sent the receiving process would never be prompted

to look at the communication link for a message.

44

m-.

V. SUMMARY AND CONCLUSIONS

In this thesis we have focused on three major areas of work. First, a para-

digm for a software system has been presented. and we have examined how the

components in the paradigm relate to the portability of the software system. Let

us review the general issues of software portability discussed in the previous

chapters. We have presented a paradigm for a software system which shows that

there are two main components to any software system, the system source code

and the operatings system commands used by the software system. Each of these

main components has additional sublevels. For the system source code there are

the sublevels of machine code. assembler language and high-level code. The sub-

levels of operating system commands are, basic commands, command files, and

utilities. We have also stated that there are three parts to a computing environ-

ment which a software system interacts with, the hardware, the translator (used

by the source code for the software system) and the operating system. Finally, we

have stated that. the components of a software system interact with the parts of

its computing environment through three types of processing, basic processing.

translator environment processing, and runtime environment processing.

Our analysis showed that the ease with which a software system reacts to

porting is determined by three factors:

* the levels of system source code and operating system commands used to

construct the system.

* the types of processing which the software system performs, and
* the parts of the computing environment which are changed.

45

. 14

In general. a software system is highly porrahie if iT use. oniy high-level code. anUi

if it avoids runtime environment processing whenever possible.

The second focus of the thesis has examined how well the MBDS software

stands up to porting. To construct its three versions. the MBDS software has

been subjected to all three types of porting. Each time the system was ported,

MBDS ran on new hardware, had a new operating system and had a new transla-

tor for its system source code. Despite the drastic changes in its environment,

MBDS performed extremely well each time it was ported. In neither case did the

fundamental MBDS design require modification. This can be attributed to several

factors. First, the MBDS software is written entirely in high-level code and the

use of runtime processing has been avoided except where absolutely necessary

(e.g., communications and disk input/output). Additionally, any processing

which might complicate portability has been buffered in MBDS through the use of

abstraction, encapsulation and virtual interfaces.

The third focus of the thesis has involved the details of the MBDS porting.

The major work of porting MBDS has involved modifying the sections of code

which create the virtual interfaces. The interfaces themselves have not been

changed. only the way in which the interfaces accomplished their jobs are

modified. These changes have involved the MBDS communication software. For

the inter-computer communications, the MBDS version one software has been

modified to create MBDS version three. This intra-computer communication is

accomplished using VMS mailboxes. For the inter-computer communications,

entirely new communication software has been created in MBDS version three.

The VMS DECNET communication drivers are utilized for the inter computer

communications. (Source code for the new inter-computer communication

software is contained in the appendixes to the thesis.)

46

In addition to modifying the communication interface,. creating .MBD ver-

sion three has also required modifying all of the operating system command files

used to manage the software. This involved rewriting the UNLX makefiles (from

MBDS version two) as VMS command procedures (for MBDS version three).

Rewriting the command files has been the most time consuming task in the port-

ing process.

Overall, MBDS has proven to be easily portable. With the exception of some

minor problems caused by the way the new compiler parsed some lines of code (in

MBDS version three), all of the modifications required to port MBDS have been

known before the porting began. Additional information on the portability of

MBDS can be found in [Ref. 1] which deals with the process of porting MBDS

version one to MBDS version two.

47

APPENDIX A - THE MBDS CONTROLLER GET-NET SOURCE CODE

V A X/ VMS G -P C LC

: include <stdio.h-> /* Standard 1/O definition 4

#,:include <ssdef.h> /* VM1S.return status codes ~
=include <iodef.h> /* NNE 1/O return codes
=include <xnsgdef.h> P* DEGNET msg definitions ~
=include <dvidef.h> /* INNS device definitions ~
=include itc onmdat a .de f /* '.MDS conino n d ef s
~inc Iude "msg def" /* MNBDS msg- type defs 4

=include "flags.def" /4 M'DS compile flags
=def ine M.AXBE 16 /~max num of backends 4

char netbuflMSGLENJ- P / network buffer
char mbxbuf[MSGLEN]; /* mailbox buffer
c h ar ms g[MSGLEN]/ N'BDS-msg buffer 4

short net chan: /4channel to DEGNET 4

short mbx chan: /* channel to mailbox 4

short be _chan[MAXBE + 11 ; /*- chans to backends 4

/* backend 0 is not used 4

sh o rt be _dev[MAXB3E + 1];/ device nurn of chans 4

short Nofackends; /the num of backends 4

struct msghdr head;

48

main

mnt . loop index
StopSys: /~system running flag ~

char NoBEs [NoBElength + 1]:

/* mnit intra-computer conznunication *
mbinit(GPGLG)

: ifdef EnExFlag,
printf("Enter GPGL\nl);

*Iend i f

P~ get the number o-f backends ~

:,:ifdef pr _flag

- edifprintf("Getting number of backends\n"):

receive(msg. &head):

:Fifdef pr _flag,
m-prnt(msg. &head);

rFend i f

if (head.type '= SetNoBEs)

f
print f(It** Error in GPCLC. first msg must be "

printf("of type SetNoBEs *n");

printf("~** Type = %d **\~I" head.type);
m-prnt(Aansg. &head):
sleep(DELAY):
ex i t(

/~Extract the number of backends ~
for (i=O: ((NoBEs[i] = msg~i]) != 0'): i-H-):

NoBackends = str to num(NoBEs);

:;ifdef pr _flag
printf("Nunber of backends= %d~ln". NoBackends):

;iendif

49

-f - . P71

Init network connections to P PCL's in backenu-:
net init(-No~ackends):

StopSys = FALSE:
while (!StopSys

get message(msg.&head):

switch (head.type)

/* msg, type for msgg from D~Vgt (BEnds) to IIG (ctller) ~
case(ReqForNewDesc Id):
head.receiver = IIG:

break:

case (Glus Id):
head.receiver = IIG:

break -

/~msg type for msgs from RecP (BEnds) to PP (cntrl) ~
case(BC _Res):
head.receiver = PP:
break ;

case(BG_-AORes):
head.receiver = PP:
break;,

/~msg, type for msgs from RecP (BEnd>,) to ReqP (cntrl) '
case(RetFetCausedByUpdRes):
head.receiver = REQP:
break:

case(RecChangedClus):
head.receiv'er =REQP:
break :

case(No.MoreGenlns)
headreceiver =REQP:
break:

50

nsg Type for masgs from BEnd, To TI (ctl1 er)

case tError)
head-receiver = TI:
break :

4 case(ErrorFree):
head.receiver =TI;

break;:

case(GeTimes):
head.receiver =TI:
break ;

case(Tim_Arr _ Erp):
head.receiver =TI:
b re ak ;

case(Stop):
StopSys =TRUE:.

def ault:
printf("Invalid message type)

printf("encountered: %5d n",head.type):
exit-_gracefully ()

}/* end switch ~

if (StopSys

head.sender = G PCLC:
send(msg. &head):

4ifdef pr _flag
m pint (msg. &head):

=~end i f

/'end while ~

:=ifdef EnExFlag0

A *printf("Exit GPCLn"):
zend i f

51

r ou t i ne t o g e ThTle next iiie ,sage f ron:. The ne twork

get _message (mptr.hptr)

c h ar Imptr:
struct msg -hdr ~pr

m t s glent

func
j . kt

Vshort iosb[4]-
char rcvbuf[MSGLEN + 11,

intbuf[21 = "' 0".

tmp s tr [5]

short msg rec:

=ifdef EnExFlag
printf("Enter get messagen"):

=end if

/~Check mailbox for message notices ~
read _mbx(mbxbuf):

/* Read the message ~
read _net(rcvbuf. mbxbuf):

/' Get the header information ~

k=O :

/* get sender ~
f or (j=0: j -: j+

tmpstr Hi] rcvbuf~k-H-];
tmpstr[j j =.0.

hptr--,sender = str to num(tmpstr):

0,et receiver
f or (=0: 3: ++)

tmnpst r [j = rcvbuflkt[I
tmp s tr I = .0>
hptr-.receiver =str to num(tmpstr).

52

/~get the type/
for (J=O: :j±

tmpstr[ji rcvbuf~kH-J
trnpstr [j] ., .
hptr->type =str to num(tmnpstr):

=ifdef pr _flag
ia-aprnt(rcvbuf. hptr):

:-end i f

copy the message
j =0 ;

while ((k < MNSGLEN) && (rcvbuf[k] I!= ECsg)
mp tr jt-++] = r cvbu f [k-] ;

mptr[j I rcvbuf[k] ; /* get Eavlsg ~

if (k >=MSEGLEN)
pr intf (I*'" Value of MSEGLEN";
printf("should be increased *****\n"t):

#ifdef EnExFlag

*enifprintf("tExi .t get _messagekn");

} /~end get-message ~

53

,Routine to check the mailIbox for message notices

read _mbx(buf)

char *buf:

short msg _rec;
short stat;
short iosb[41;

iifdef EnExFlag
print f("Enter read _mbx\n");

#end i f

msg rec =FALSE;

while ('msg _rec

:iifdef pr _flag
printf("Calling qio, read mailbox\n"):

~end i f
stat= sys$qiow(0, mbx _chan, 10$ _READVBLK.

iosb, 0,0. buf, MSGLEN, 0,0.0.0):
*ifdef pr _flag

print f("Returned f rorn qio 'n"):
tiend if

if ((stat '= SS$ _NORMAL) (iosb[0] != SS$ _NORMAL))

printf(?f*' Mailbox read error. stat= %d (%x) .

pr in tf (" iosb(0] = %d (%x) * * \n" , stat . stat
iosb[0]. iosb[0]):

exit gracefullyo;

switch (buf[O])

case M'vSG$ IN'LMSG:

msg _rec =TRUE:
break:

54

c a se MLSG$ CONNECT:
j

printf("* 'Network connection")
printf("requested 44nf):
printf("*' GPCLC should not)

print("lreceive connect reqs s ")
exit-_graceful ly()

c a se MSG$ _CONF IRM: b r eak:

de faulIt: f
pr i nt f(" ** Ne two rk e r ror ,

p r in tf ("mbxbu f [O]=5d (%x) cx n".
buf[O], buf[o])

exit _graceful ly(:

} ~ end switch ~
} ~end while *

#ifdef EnExFlag
printf("Exit read _mbx',n")

#end i f

}Iend read mbx ~

55

/ Routine to read a rnessa-e from a backend

read-net (rcvbuf. rnbxbuf)

char *rcvbuf, ':mbxbuf

short * unit.

BEnum,
f unc ,
s tat,
iosb[4]

4ifdef EnExFlag
printf ("Enter read net' n"-:

#end i f

unit= mbxbuf:

for (BEnumn = 1: be dev[BEnun] != unit[lj : BEnun++)

if (BEnurn =- NoBackends)

printf("I**' Cannot locate unit number to

print("read net with. **,n)
printf("I*** Searched through %,d backends."):
pr in tf (" n" BEnum),
exit _graceful ly(;

4ifdef pr _flag

printf("Calling qio read from backend % (dn".BEnun):
*end i f

func = 10$ _READX'BLK;
stat= svs$qiow(0. be _chan[BEnum]. func. iosb.

0.0. rcvbuf. MSGLEN. 0.0.0.0):

#ifdef pr _flag
printf("Returned from qio n"):

4-end i f

56

i f (s ta t '=S S $NORMNALj i josbO. SS $ -NORM\ALi

printf("" Read error be c han %-,d . s ta t-= ' 'd(%xV"x
printf("iosb[fOI= %d(7x) " n". BEnum. stat.

stat. iosb[oj. iosb[Ofl:
exit _graceful ly(;

#-ifdef EnExFlag
printf("Exit read _net~n")

;;end i f

} ~end read net i

*Routine to mnit al iz Decnet I itik- To each backend

net init(.NoBEs)

int NoBEs:

i nt s tat. 1;

short iosb[4];
char nodespec(128J. tmpstr[5J;

struct sd f
i nt ILe n
char *pt r

netnarn = {5. "NET:" }
ncb = {0, nodespec }
netmbx = {6. "NElIBX" }

long dviunit[1]:
short dviunit-lenlil:

/* structure to get unit numbers for chan's to net ~
struct {

short len: /* buffer length
short code: /* item code '
long *unit: /~addr to return unit to
short * unit len: /~length of unit '
long nul: / end of descriptor '
I
dvi = {4. DVI$ UNIT. dviunit. dviunit len,0}:

=ifdef EnExFlag
print f("Enter net mnit n")

ttend i f

/* create a mailbox '
stat=sys$crembx(0. Snbx _chan. NBGLEN. WLavIkX.
* 0. 0. &netmbx):
if (stat '= SS$ _NORMvAL)

f
printf("~** Error creating mailbox,)

printf("stat= 'rd (%x) -\n". stat. stat):
exit graceful ly(:

58

/assign channels to the net
f or(I=1 : I . NoBEs : i-)

{
stat= svs$assign(&nernam. &be _chan[il. 0. &netmbx):
i f (s tat S= $ -NORIAL)

printf("** Error in assign be chan %d, "1):
p r in tf("s t a t=%d (%x) * *'\fl I .stat.stat):
exit _graceful ly(-

}/* end for i ~

/ * Establish logocal link ~
for(i=1; i <c= NoBEs: i-H-)

/* build network connect block ~
strcpy(nodespec. "CSMV"):,
num -to str(i. tmpstr);
strcat (nodespec, tmpstr):
strcat (nodespec , ": :\O=PPCLB\ ""):

:s-ifdef pr flag
printf("'backend %d nodespec. ' s'n.i. Rodespec):

*end i f

ncb.len= strlen(nodespec):

/* Request the connection *
stat= sys$qiow(0, be-chan[i], 10$ ACCESS. iosb.

0.0,0, &ncb. 0.0.0.0):
i f ((stat != SS$ NORMvAL) Ii (o sb [0 S S NORMIAL))

printf("** Access err r be chan %d. stat- %d)

printf("(%x) . iosb[0]= %d (%x) **n. i . stat.
stat. iosb[0J. iosb[0]):

exit gracefullyo:

} ~end for i ~

59

*Get unit number-. for the channels
for(i=1: i ,=NoBEs: III

stat= sys$getdvi (1. be chanj il 0. &dvi iosb.O.0.0):
i f (stat != SS$ _NORMAL)

printf("** Error getting channel number for BE)

printf("%d. stat= %d (%-,x) 'n i stat, stat):
exit graceful ly()

I
sys$wai tfr (1)
if (iosb[O] != SS$ NORMARL)

printf("** Error getting channel number for")
printf("BE %d. iosb[O]= %d(%"x) - n".i

iosb[o]. iosb[O])
ex it gracefully ()
I

be _dev[i] = *dviunit;

} ~end for i '

#ifdef EnExFlag
print f("Exit net in it 'n")

:tend if

}/* End net mnit

60

routine to disconneCT all1 network 1links

disconnecto

i nt s t at,:

#if de f EnExF Iag
printf("Enter Disconnect',n");

4rend i f

for (i=1: i <= NoBackends: i++)

#ifdef pr _flag

printf("Disconnecting backend %,dn". i);
r-end i f

stat= sys$dassgn(be _chantil):
if (stat != SS$ _NORMAL)
printf("I** Dassign Error for backend %d.)
print f("st at= %d (%1x) * *'%n".i stat. stat):

#ifdef EnExFlag
printf("Exit Disconnect\,n");

#end i f

}/* End disconnect *

/* Routine to close network connections. then abort *

ex it graceful ly(

sleep(DELAY);
disconnect (
ex it()

APPE'NDIX B - THENMBDS CONTROLLER PUT-NET SOURCE CODE

P V A X/V MS P P C LC

=include <stdio.h> /SStandard I/O definition 5

=include <ssdef.h>' /* VMS return status codes ~
'include <iodef.h> /' NMS I/O return codes
: include <msgdef.h> /* DECINET msg definitions 5

=inc lude "con-xndata. def' /* M1BDS coninon defs 5

irinclude "msg.def" /' VMDS msg-type defs
: include "flags.def" / 5 MDS compile flags
zinclude "beno.dcl" /* backend num decl

=tdefine 'MAXBE 16 /P max nuni of backends ~
#tdefine TRUE 1

-: #define FALSE 0

char netbuf[MSGLEN] ; 1*network buffer
c h ar ms g[MSBGLEN I : /* MDS-msg buffer

short be chan[NME + 11 ; /* chan's to backends ~
/* backend 0 is not used ~

short be _dev[iA.XBE + 1j; P~ device num of chans ~
short NoBackends: /* the num of backends ~

struct msg _hdr head:

62

main

int StopSys i .j.k:
char NoBEs[NoBEle-ngth 1

#ifdef EnExFlag
printf("Enter PPGL'n")

*end i f

/* init intra-comnputer conrinunicat ion
mbinit(PPCLC):

/receive a message from a controller
/* task into ppcl's mailbox
receive(&insg[O]. &head):

/* The first message should type SetBEno. *
if(head.type != SetNoBEs

printf("Error in PPCL. 1st message "

printf("must be of type SetNoBEs"
printf("Type = %d\n". head.type
msend(&ansg[O]. &head):
abort ()

/~send num of BE to GPCLC ~
head.sender = P PCLC:
head.receiver = G PCLC;
send(&ansg[O] . &head);

/* Extract the NoBackends
for(k=O, j=O; (NoBEsfi] = msg[k]))! '0':

k-H-. j++)
NoBackends =str to _num(NoBEs

k ++:

/~Initialize connections to backends ~
net init(NoBackends):,

/send BACKENDNO and NoBackends to backends '
/* Change the message type */

head-type =SetBEno:

/send the msg, to each BE *

for (i=1: i NoBackends: i1 i -1

,/'-Put the backend number into message
ien num to str((i). NoBElength. &znsg~k])
msg~k + NoBElength +1] = EIsg;

/~send the msg to the specified BE /

head.receiver= G PCLB:
put message(msg.&,head. i):

/* receive message from a cont-roller ~
/* task into ppcl'snmailbox
receive (A&nsg[O], &head):

StopSys =FALSE:
while (!StopSys

/~send the msg to each BE ~
for (i=1; i <= NoBackends: i = i + 1)

/~send the msg to the specified BE *
put message (msg.&head.i):.

if (head.type = Stop

e se topSys =TRUE:

/receive the next message ~
get message(A&nsg[Oj &head)

} end while ~

exit-_gr-aceful ly()

64

Proutine to send message over networ. to a backend

put _message (mpt r.hpt r.BEnum)

char *mptr:.
struct msg hdr 'hptr;
int BEnum:

i nt s tat.
ms glen.
func .

.k:

short iosb[4]:
char sndbuf[MSBGLEN + 1],

intbuf[2] = "A" /* null message ~
tmps tr [5]:

zifdef EnExFlag
printf("Enter put message\n"t):

=end if

hptr ->sender P PPLC;
hptr ->receiver = G PCLB:

k=o ;

/ * copy header into message to be sent *

len-num-to str(hptr->sender. 3. tmpstr):.
for (j=O; j -- 3: j-H-)

sndbuf[k-- = tmpstr[j]:

len-num-to str(hptr->receiver. 3. tmpstr):
for (j0O; j < 3: j+-)

sndbuf~k+]j = tmpstr[j];

len num-to str(hptr->type. 3. trnpstr);
for (j=O: j < 3: j-H-)

sndbuf[k+±] = tmpstr[j];

65

copy the message
j =0:
wh ie I e k M-NSGLEN'&

(sndbuf[k-t-<] mptrj+±) =EG~lsg

i f (k >=MSG LEN)
p r int f(*~ ValIu e o f NMSGLEN')
printf("should be increased -* n"):

ms glen =k

Ssend the message ~

-ifdef pr _flag

printf("Calling qio write to backend %,d rill BEnum).
mnprnt(sndbuf, hptr):

~e -difT

func = 10$ _WRITEVBLK:
stat= sys$qiow(0. be-chan[BEnumj, func. iosb. 0.0.

sndbuf. msglen. 0.0.0.0):
4'ifdef pr _flag

<p pr in tf("Returned from qio. writen"):
~en d i f

i f (s Ta t .= S S$ NORM'VfL) i (ios b [0 S S NORMAL)

printf("" 'Wri te error be chan cd. s ta t od
p r in tf("Tx) iosbtO]=-%d (%cx) n BEn um.

stat, stat. iosbI0,,. iosbl0])
exit-graceful iy(

II

~let receiver know msg, is there ~
=Ifdef pr _flag

printf("Calling qio. interrupt nil):
=end if

func = 10$ 'vRITEVBLK IO$M INTERRUPT:
stat= svs$qiow(0. be chan[BEnuml. func. iosb. 0.0.

intbuf. 1. 0.0.0.0).

66

=ifdef pr flag
printf("Returned from qio. interrupt n"):

:;end if

i f (stat I!= SS$ _NORMAL) Ii iosb [01 S S$ _NORML))L

printf("~** Interrupt error bt- chan %d.")
printf("stat= %d(%x). iosb[Oj= %d(%x) *\nI?

BEnum, stat. stat. iosb[O] . iosb[Ol)
exit _gracefullyo(

#ifdef EnExFlag
printf("Exit put _message\\n"):

#end i f

67

In itijal izes DecneT links to each of the backends7

a-et _init(NoBEs)

int NoBEs:

i nt stat.;
short iosb[41;
char nodespec[128]. tmpstr[5]:.

struct sd{
i nt Ien
char *ptr;,

netnana= 5, "NET:" }

ncb ={0, niodespec }

#if de f EnExFlIag
printf("Enter net _init\n");

:pA end i f

for(i=1: i <= NoBEs: i--)

f
/assign a channel to the net ~

stat= sys~assign(&netnam. &be chan[i]. 0. 0):
if (stat != SS$ _NORM~L)

printf("** Error in assign be chan %d, i

pr in tf ("stat = %'d (%x) * *,n" . i.s tat .s tat)

exit _gracefullyo;

/* Establish logocal link ~
for(i=1: i <= NoBEs: i-H-)

f
/* build network connect block *
strcpy(nodespec. t1CSMV",):
num n to str(1, tmpstr);
strcat, (nodespec. trnpstr);
strcat (nodespec . ": : "O=PCLB\"").

68

~if d ef p r f flaga
print f("'backend % 'd node spec . "%s "n" i. node spec:

r-end i f

ncb. len= strlen(nodespec)

/* Request the connection ~
stat= sys~qiow(0. be _chan[i] . 1$ ACCESS, iosb.

0.0,0. &ncb. 0.0.0.0);
if ((stat != SS$ NORMIAL) 11 (iosb[O] '= SSS NORMAL))

printf(t l*' Access error be chan %d. stat= %d ;

printf("(%x).*iosb[0I= %d (%ox) **n" i. stat.
stat. iosb[0] . iosb[0])

exit _graceful ly()

} *end for i ~

i fdef EnExFlag
print f("Exit net _in itn)

#nd if

69

hroutine To di sconnect all network l ink,

disconnecto

i nt s t a t,

iifdef EnExFlag
printf("Enter Disconnect\n"):

*~end i f

for (i=1; i <= NoBackends; i-H-)

;*ifdef pr _flag

printf("Disconnecting backend %d,,n. i):
=end i f

stat= sys$dassgn(be chan[i]);
isif (stat I!= SS$ N.\OIAL)

printf("~** Dassign Error for backend '7d,)

printf("stat= %d (%x) **\In",i .stat , stat):

I
ifdef EnExFlag

print f("Exit Disconnect n")
u end if-

} *end disco-nnect *

/* Routine to close network connections. then abort ~

exit _graceful ly(

sleep(DELAY):
disconnect()
exito(

70

APPENDIX C - THE.MBDS BACKEND GET-N'ET S-OURCE CODE

PV A X/ V MS G _ P CL B

#include <stdio.h> /* Standard 1/O definition ~
#include <ssdef.h> /* VMIS return status codes ~
#include <iodef.h> /* VMS I/O return codes
include <nisgdef.h> 1 DEGNET msg definitions *
#include <dvidef.h> /* VMS device definitions
#inclIude "conindat a.de f" /NMDS c onmion def s
#include "msg.def" /* MDS msg-type defs
#include "flags.def" /* vBDS compile flags
:,define MAXBE 16 /~max nurn of backends *

char netbuf[MSvGLEN] ; /* network buffer
*char mbxbuf[M'vSGLEN] ; / * mailbox buffer

char ms g[M-'GLEN] ;/* .MDS -ms g buf fe r

short net chan; /~channel to DECNET I /
short mbx _chan; /~channel to mailbox *
short be _chan[MNA.XBE + 1]: /~chan's to backends ~

/* backend 0 is controller ~

short be dev[MA.XBME + 1] ; /* device nuin of chans ~
short Notackends: /* the num of backends *
short next chan =0: /* the next avail chan /

struct sd {
mnt len:
char 'ptr:

} ~string descriptors for: ~

/* the network device name
netnarn = { 5, "-NET:" }

/* the mailbox name
n e tmbx 8 { , " G_NE1MI BX"}

struct msg _hdr head;

71

1 5 1 1 11111C 0 1 I I .

int StopSys: system running flag ~

sTifdef EnExFlag
printf("Enter G-PCLBn"):

;,end i f
/' init intra-computer commnunication *
initsr (GPCLB)

/*set up to use DEGNET *
net _init();

StopSvs = FALSE;
while (!StopSys

P~ get a message from the network

get _message(Aansg[O]. &head):

Psend the message ~
set header()

if(head.type Stop
f 1* exit from MDBS *
StopSys = TRUE;

head.receiver =RECP:
send(rnsg. &head),

head.receiver = EtA;
send(msg. &head):

head.receiver = CC:
send(ms.g. &head):

head.receiver =P_ PCLB:
*send(insg. &head):

} *end if part ~

72

else if(head.type = setBno

set number of backends. '
/~and this backend number. '

/* GPCL. itself, does NOT care '
head.receiver = RECP:
send'msg. &head);

head.receiver = vM:
send(msg, &head);

head.receiver = CC:
send(msg. &head):

head.receiver'= P PGLB:
send(msg, &head);

else if(head.type-
NewDB 1 / /* create new database '

head.type-

Sel1ec tDatabase)
1*assign database to user *

1*send to ALL tasks *
head.receiver = RECP:
send(msg. &head);

head.receiver = IDM:
send(msg. &head):,

73

=ifdef TimeFlag,
else if ((head. type >= MIN RP MS',GTYPE)

&&(head .type <=MXRPSTYPE))

head.receiver = RECP;
send (rsg.&head):

else if ((head.type >= MIN CC MSGTYPE)
&&(head.type <= MAX CC MSTYPE))

head.receiver = CC;
send (msg,&head);

else if ((head.type >= MIN DM MSGTYPE)
&& (head .type <= MAXLtM.\S YPE))

head.receiver =t D1:
send(msg,&head):

else if (head.type == GeTimes)

head.receiver = RECP:
send (msg,&head):
head.receiver = CC;
send (msg,&head);
head.receiver = IMi;
send (msg,&head);
/ *~ end if (GeTimes)~

#end i f
elIs e
1* (I!= FINISHED && I!= GETIMES)~

send(msg, &head);

} *end while *

Fifdef EnExFlag
* printf("Exit G-PCLB\n")

#end if

exit (

} *end main ~

74

routine to get the next message fromI The network

get _message-imptr .pt r

char *mptr.
structrnsg _hdr *hptr:

i nt s ta T

ms gl1en.
f unc
j , k:

shor~t iosb[4];
char rcvbuf[MSEGLEN + 11.

intbuf [2] =1\0,

tmpstr [5]

short msg _rec;

#ifdef EnExFlag
printf("Enter get message\n");

#end i f

/* Check mailbox for message notices *
read _mbx(mbxbuf);

/* Read the message ~
read _net(rcvbuf. mbxbuf):

/* Get the header information *

k=O ;

/* get sender ~
for (j=O: j <,. 3: j-H-)

tmpstr[j] = rcvbuf[kt-+]:
tmpstr[j] = "'

hptr->sender = str to _num(tmpstr):

/' get receiver */
for (j=O; j -3: j++)

tmpstr[j] = rcvbuf[k+4];
tmpstr[j], \= -
hptr->receiver = str to nurn(tmpstr);

75

get the type ~
-fo0r (j 0 : j <~ 3 : j +{

tmps tr [I = rcvbuf Ik-H-]
tznpstr[j = 0

hptr->type =str to num(tmpstr);

ifdef pr _flag

m-prnt(rcvbuf. hptr):
#end i f

/I copy the message ~
j 0 ;

while ((k < MSGLEN) &&(rcvbuf[k] !=EC1~sg)

mpt r j-++] = rcvbu f [k++] ;

mnptrjj rcvbuflk]; /* get EC1vsg *

i f (k >=MSGLEN)
printf("I**"* Value of MSGLEN "
printf("should be increased ****,nfl).

~if d ef EnExFlIag

-.enifprintf("Exit get _ressage\n"):

} /~end get-_message ~

76

* U Routine to check the nmailibox for message not ices

read _mbx(buf)

char "'buf:

f
.4short msg _rec;

short stat;
short iosb[4]:

-1itdef EnExFlag
printf("Enter read _nibx\n"):

-*end i f

rnsg rec =FALSE;

while (!msg _rec)

#ifdef pr _flag
printf("Galling qio, read mailbox n"):

#end i f
stat= sys$qiow(0. mbx chan, 10$ _READVBLK. iosb.

0,0. buf. MSGLEN. 0,0,0.0);
#ifdef pr _flag

printf("Returned from qio \n");
-end i f

if ((stat != SS$ _NORMALL) II(iosblO] != SS$ _NORMTAL))
f
printf("*": Mailbox read error. stat= %d (%x), "

printf("iosb[O]= %d (%x) **\lhI stat, stat.
iosb[0]. iosb[0])

exit graceful ly(;

I

switch (buf[0])

f
case MSG$ INTIMSG:

msg _rec =TRUE:

b re ak:

77

c a s e t CONNECT

COIL xie-C t (buf)

case MSBG$ CONFIRM: break:

default:{
printf("~** Network error.
p r in tf ("mbxbu f []0 %d (%-x) n.

buf[O], buf[o] I
exit _graceful ly()

} *end switch ~
}/Z end while ~

-'ifdef EnExFlag
printf ("Exit read mbxxn");

=end i f

} ~ end read znbx ~

T8

/* Routine to read a message from a backend >

read-net (rcvbuf. mbxbuf)

char *rcvbuf. *mbxbuf;

N short *unit,
BEnurn,
f unc ,
s tat.
i osb 14]

#ifdef EnExFlag
printf("Enter read _net\n");

*end i f

unit= mbxbuf;

for (BEnuin = 0: be dev[BEnum] !=unit[1] ; BEnum++)

if (BEnun >= (next _chan -1

printf("l*** Cannot locate unit number to
printf("read net with. *** \nl) ;

printf(FI*** Searched through %d backends,")
printf(" next -chan%d ***\nI, BEnum, next _chan):
ex it _raceful~

#ifdef pr _flag

printf("Galling qio read from backend %d\n", BEnum):
#end i f

func = 10$ _READVBLK;
stat= sys$qiow(O, be _chan[BEnum], func. iosb, 0.0,

rcvbuf. MISGLEN, 0,0,0,0);

#ifdef pr _flag,
printf("Returned from qion"):.

#end i f

79

i f Hs tat SS N ORMALkL) io sb 0 'S S NO RMAL))L

p r in tf(t Read error be chan Lcd. st a t= %7,d (0 ox) I)

p r in t f"i o sb[O1-0 %d (x) n"'. BEnum. s tat .
stat. iosb[oj, iosbJO1):

exit _graceful ly();

=ifdef EnExFlag0
-, printf("Exit read net\n"):

=end i f

} ~ end read-net ~

80

/ Initialize Decnet to receive connection requests ~

ne t m n it(

i nt s tat,
short iosb[4]:

*define NFB$CDECLNAME OxiS
char nfb[5] NFB$C DECLNAM, 0,0,0,0 }

struct sd{
i nt Ilen;
char *ptr.:

objnam = {5, "GPGLBtf
nfb d = {5, nfb

char tmpstr [5];

#ifdef EnExFlag
printf("Enter net init\n");

#end i f

/1* create a mailbox ~
stat=sys$crembx(0, &mbx _chan, MSGLEN. WMSG, 0. 0,

&netmbx):
if (stat != SS$ _NORMAL)

f
printf(wI** Error creating mailbox,")
printf("stat= %d (%x) **\llt stat, stat);

exit _gracefully();

I

/~assign channel to the net ~
stat= sys$assign(&netnam, &net chan, 0, &netmbx);
if (stat != SS$ _NORMAL)

f
printf("'* Error in assign for netchan, I)

printf("stat=%d (%x) **\nII, stat. stat);
exit _graceful ly()

81

,declare a network name
stat= sys$qiow(O. net _chan. 10$ ACPGONTROL. iosb.

0.0. &nfb _d. &objnan. 0,0.0.0):
i f (s tat '= SS$ _NORMAL) II(iosb[OI != SS$ NORMAL))

printf(I** Error declaring network name *\n)

exit _graceful ly(:

I

#ifdef EnExFlag
printf("Exit net init\n ")

#end i f

82

~routine to accept a neT-work connection request ~

connect(buf)-

char 'buf;

f

s tat,
i osb [4]

char nodespec[128]:

struct sd{
i nt Ien;
char '*ptr:

I
ncb ={0. nodespec }

long dviunit[1];
short dviunit len[1]:,

/* structure to get unit numbers for channels to the~net ~
struct f

short len; /* buffer length *
short code; /* item code
long *unit; /* addr to return unit to *
short *unjtlen: /* length of unit *1
long nul; P~ end of descriptor *

dvi ={4. DVI$_UNIT, dviunit, dviunit len. 0 }:

#ifdef EnExFlag
printf("Enter connect\n");

e nd i f
/see if there are any channels available *

i f (n ext -ch an > AXBAE)

printf("** Too many connection requests)
printf("attempted. next chan= %d **\,n. next _chan);
exit gracefullyo:

83

Extract network connect block from mailbox buffer

offset = buf[4] + 5: /* point to ncb length in buf ~
ncb.len = buf [offset]; /' put length into our ncb
offset++; /* point past ncb length
for (i=0; i < ncb.len; i-+-) /* get the ncb

nodespec [i = buf [i + offset]:
nodespec[i]= '"0*

#ifdef pr _flag
printf("** nodespec= %s **,n". nodespec);
printf(II** next'chan= %d **\n"t, next-_chan);

#end i f_

/* Assign the next channel to the net
stat= sys$assign(&netnan, &be-chan~nextchan], 0,

&netmbx):
if (stat != SS$ _NORMAL)

f
printf("?** Assign error be chan 97d,)
printf("stat= %d (%x) \n * \?next _chan,stat, stat);
exit -gracefullo;

1* accept the connection *
stat= sys$qiow(0. bechan[next _chan]. 10$ _ACCESS,

iosb, 0,0.0, &ncb. 0,0,0,0):
if ((stat != SS$ _NORMvAL) II(iosb[0] != SS$ _NORMAL))

printf("** Accept error be chan %d, stat= %d(%x),"):
printf(" iosb[0]= %d(%x) "-In". next _ chan, stat.

stat. iosb[0J . iosb[0).
exit _graceful ly()

84

/Get unit numbers for the channels
stat= svs$getdvi(1. be chan'next _chan].

0.& .dvi. iosb. 0.0,0):
i f (stat != SS$ _NORMAL)

printf("** Error getting channel number for BE ;

printf("%d. stat= %d (%x) **\n",
next chan, stat, stat);

exit _gracefullyo:

sys$waitfr(1):
if (iosb[0] != SS$ _NORMAL)

printf("*' Error getting channel number for BE)
printf(" %d, iosb[0]= %d(%x) **\n", next _chan.

iosb[0I, iosblol);
exit _graceful ly()

I
be _dev[next _chan] = *dviunit;

1* increment the 'vailable channel pointer ~
next chan++;

#ifdef EnExFlag
printf("Exit connect\n');

"end i f
}P/ end connect ~

85

/ Routine to disconect all of' the network links
di sconnecto

int stat. i:

: ifdef EnExFlag
printf ("Enter Disconnect .n");

#end if

for (i=1; i < next _chan: i-H-)

#ifdef pr _flag
printf("'Disc6nnecting backend %d\n", i):

#~end i f
stat= sys$dassgn(be _chan[i]);
if (stat '=SS$ _NORMAL)

printf(t I** Dassign Error for backend %d.")
pr in tf ("s ta t %d (%x) * *\n" , i , stat , s tat)

4ifdef EnExFlag
printf("Exit Disconinect\n");

*end if

1* SETHEADER assigns values to the msg header *
set-header (

head.sender =GPCLB;

/ * set the receiver *
head.receiver = Ilvi; /*' the default *

/ *~ end set-_header */

/'Close all network connections before aborting
exit gracefully()

sleep(DELAY):
disconnect (
ex i to(

86

APPE.NDIX D - THE -MBDS BACKEND PUT-NET SOURCE CODE

PV A X/V MS P P CL B

#include <stdio.h> /* Standard I/O definition ~
#include <ssdef.h> 1* VMIS return status codes ~
#include <iodef.h> 1* VMS I/O return codes
#include <xnsgdef.h> /* DECNET msg definitions *
#inc lude " c oundat a .de f /~ *MBD S c oninon d ef s
#include "msg.def" /* MBDS msg-type defs
#include "flags.def" /*.'vDS compile flags *
#include "beno.dcl" /* backend num declares ~
#define MAXBE 16 P~ max num of backends *

char netbuf[M4SGLEN] ; P~ network buffer *
char mbxbuf[MfSGLENj; /~mailbox buffer *
char msg[M1SGLEN]: /NIBDS-msg buffer *

short net _chan; /~channel to DEGNET *
short mbx chan: /~channel to mailbox ~
short be _chan[MIAXBE + 1]; 1* chan's to backends *

/* backend 0 is controller *

short NoBackends; /* the num of backends
short next chan = 0; 1* the next avail chan ~

struct sd{
i nt len;
char *ptr;
} /'* string descriptors for: ~

/* the network device name
netnarn = { 5. ".NET:" }

/V the mailbox name
netmbx ={8, "P NEThIBX"1;

struct msg _hdr head;

87

main (

int StopSys: /" loop flag ~
i nt j .k :
char NoBEs [NoBEl ength -s1l:
char BENumber[NoBElength +11;

iifdef EnExFlag
printf("Enter p _pci _bl\n"),

;iend if

/* Initialize intra-computer commnunication *
initsr (P_PCLB);

/ * set up to use DEGNET ~
controller net init();

/receive a message from the controller
receive(S&nsg[O]. &head);

/* The first message should be of type SetBEno. *
if (head.type != SetBEno)

printf("Error in PPCL. 1st message must f

printf("be of type SetBEnol')
printf(" Type = %d\n". head.type)
m-prnt(&msg[Oj. &head);
exit graceful ly(;

/* get number of backends *
for(k=O,j=O :(NoBEs[j] = msg[k]) 0='\':

k ++ , j-H-

NoBackends = str to _num(NoBEs)
k -s-i;

/* get backend number *
for(j=O (BE Number[j] = mnsg[kJ))! '\O':

k-H-, j-S+-i

BACKEND NO str -to-num(BE-Number)

88

backend net- mit (NoBackendt. BACKEND Nol

/' main portion of program/
StopSys = FALSE:
while (!StopSys

/*recv a msg from a BE process ~
receive(S&nsg[O], &head);

if (head.type == Stop

StopSys = TRUE;

/send the msg over the network *
1* backend 0 is the controller
put _message (Sansg[0] , &head, 0):

else if (head-type = Desclds)
{ ~send Desclds to other backends ~

head.receiver = IDA;
for (i = 1: i <= NoBackends: i = i + 1

/~send the Desclds to other backends ~
if (i I!= BACKEND_NO

put _message (Sansg,[0], &head. i):

} end for *
/ end else if *

/* send all other messages to controller *
/* backend 0 is the controller *
put message(msg, &head, 0);
/ *~ end else *

} end while *
zifdef EnExFlag

prmntf ("Exit p-pc I_bn"):
=end i f

}/* end.main *

/routine to send a mes -a~ae over the network

put _message (mptr .hptr .BEnum)

char 4mpt r
struct msg _ 1Ir *hptr;
int BEnun:

Rnt s tat.
ns g I e n
f unc
.k:

short iosb[4]:
char sndbuf[NMSGLEN + 1i,

intbuf[2]' = 0\". /*null message
tmps tr [5]:

=ifdef EnExFlag
printf("Enter put _ressage\n"):

:;:end i f

hptr -> sender = P PCLC;
hptr - >receiver = G PCLB;,

k=0 :

/* copy header into message to be sent ~

len numnto _str(hptr->sender, 3. tmpstr),
f or (j=0 : j < 3; j++)

sndbufik++] tmpstr[jI:

len-numnto str(hptr->receiver, 3. tmpstr);
for (j=O: j < 3: j-H-)

sndbuflk++] =tmpstr[j];

Ien-num-to str(hptr->type, 3, tmpstr):
for (j=O: j < 3; j++)

sndbuf[k+-+] =tmpstr[j];

g0

/ copy the message
j =0:
while ((.k -. MSGLEN) &

(s nd b u f [k-j mp t rjH]) ECI~vIsga

if (k >==MSGLEN)
prnf"'* Value of NEGLEN)

printf('"should be increased ***\n)

msglen = k

/~send the message

: ifdef pr _flag
printf("Calling qio write to backend %d\n",

BEnum);
m prnt(sndbuf, hptr);

"end if
func = 10$ _WRITEVBLK;
stat= sys$qiow(0. bechan[BEnum]. funci"iosb, 0,0,

sndbuf. msglen. 0,0,0,0):
ifdef pr _flag

printf("Returned from qio, write'n"):
#end i f

if ((stat '= SS$ _NORMvAL)I (iosb[0] != SS$ NORMARL))

printf(I"*' Write error be chan %d. stat= %d "

printf("(%x). iosb[01= %d (%x) **," BEnum.
stat. stat. iosb[0]. iosb[0I):

exit-graceful ly():
I

P~ let receiver know rnsg is there ~
:Fifdef pr _flag

pr in t f ("a11i ng qio . interrupt \n" :
: endi f

func 10$ _WIRITEVBLK IIO$M INTERRUPT:
stat= sys$qiow(0. be-chan[BEnun]. func. iosb. 0.0.

intbuf. 1. 0.0,0,0):.

91

..... P

=ifdef' pr _flag
printf("Returned from qio. interrupt n"):

=end if -

i f (s tat S S $ NORAL) i io s b[O0 S S$ -NORMAL)

printf("** Interrupt error be chan %d. stat= %d"):,
printf(" (%7x). iosb[O]= %d(%x) **\flfI BEnum.

stat. stat. iosb[O]. iosb[O]):
exit _graceful Iy(

#.ifdef EnExFlagr
printf("Exit put message \n")

#end i f

02

R o u ti ne toa i n i ti ali ze De cn et toa re ce i ve counn e c t on s

controller net init()

i nt s tat .
short iosb[4]

;define NFB$C DECLINAME oxiS
char nfb15T = f NFB$C DECLNAME. 0,0,0,0 }

struct. *sd f
i nt Ilen:
char *ptr,

I
objnam = {5, "PPCLB" }
nfb _d = {5, nfb

char tmpstr [5];

:;ifdef EnExFlag
printf("Enter controller net init~n"):

:;iend if

Screate a mailbox ~
stat=svs$crembx(0. &anbx _chan. MSGLEN, M5aVIAX.

0, 0. &netmbx):,
if (stat != SS$ _NORMvAL)

I
printf(Il** Error creating mailbox,)

pr in tf ("stat = %d (%x) * * \n" , s tat , s tat)
exit _graceful ly(;

/~assign channel to the net ~
4 stat= sys$assign(&netnam, &net chan. 0, &netmbx);

if (stat != SS$ NORMAL)

printf(II*' Error in a-ssign for netchan.)

pr in tf (its t at -=%d (;%x)*n" s t at . s ta t
exit _graceful ly()

......

declare a network namie
SraT= S.yS$qiowlO. net _chan. 10$ _ACPCONTROL.

iosb. 0.0. &nfb d.-Aobjnam. 0.0.0.0):
i f (stat' SS$ NORMLL i (osb[10 1 SS$ NORIL))

print f("*' Error declaring network name nl):
exit-_graceful ly()

/~check mailbox for connection requests ~
read _mbx(mbxbuf):

/* accept the connection ~
connect(mbxbuf):

zifdef EnEx~lag
printf("Exi t controller net- mit n")

=end i f

94

IAD-A174 i79 SOFTWARE PORTABILITY- A CASE STUDY OF THE 2/2
MULTI-BACKENDED DATABASE SYSTEMCU) NAVAL POSTGRADUATE

I SCHOOL MONTEREY CA B D SILBERMAN JUN 86

UNLSSIFIED F/G 9/2 NEEEEEEEEEE

! I I IIIIi! .0

1.1.
IIL2

CROCOPY RESOLUTION TEST CHART

"IMNAL BUREAU OF S ANDARDS- 1963-A

Routine to initialize Deenet links to backends

backend net init('NoB~s. BEnun)

int NoBEs;

i nt stat.i
short iosbl4];
char nodespecll28l. tmpstr[51;

struct sd f
i nt, Ien
char *ptr:

netnam ={5, "NET:" }
ncb ={0. nodespec };

4*ifdef EnExFlag
printf("Enter backend _net init\n"):

#endif

for(i=1; i <= NoBEs:, i-H-)

if (i !BEn um

/~assign a channel to the net ~
stat= sys$assign(&netnam, &be _chan[i], 0. 0);
if (stat != SS$ _NORMAL)

f
printf(I?** Error in assign be chan %d. "1);

printf("stat= %d (%x) **\,nI. 1. stat, stat);
exit _gracefullyo:

} ~ end if i !=BEnumn*
} /~ end for ~

95

.Establish logocal link ,

for Hi=1: i -= NoBEs: i+-+)

if (i != BEnuni

/* build network connect block ~
strcpy(nodespec, "CSMV");
num_ to _str(i, tmpstr);
strcat (nodespec, tmpstr);
strcat (nodespec, ":"=PL'Iv)

#ifdef pr flag
pr in tf (7ba ckend '%d nodes pec.f;
print f("\"%s \" \n", i . nodespec)

#end i f

ncb.len= strlen(nodespec):

1* Request the connection *
stat= sys~qiow(0, be _chan[i] , 10$ _ ACCESS.

iosb, 0,0,0, &ncb. 0,0,0,0);
if ((stat 1= SS$ _NORMvAL)flII(iosb[0] != SS$ _NORMAL))

printf("I* Access error be chan %d,)
printf("stat= %d(%7x). iosb[0]= %d(%x) *\nlf

istat. stat. iosb[0] , iosb[0J)
exit _graceful ly()

} *end if i !BEnumn~
} /~ end for i ~

#ifdef EnExFlag
printf("Exit backend _net init'n"):

vsend if

/ Routine to check the mailbox for message notices ~

read _mbx(buf)

char *buf:

short connect rec;
short stat:
short iosb[41;

if d ef EnExFlag
pr int f("Enter read mbx\ln")

#end i f

connect rec = FALSE;

while (!connect rec)

#ifdef pr _flag
printf("Calling qio, read mailbox\n");

#end i f
stat= sys$qiow(O, mbx _ chan, I0$ _READVBLK,

iosb, 0,0. buf, MSGLEN, 0,0,0,0);
#ifdef pr _flag

printf("Returned from qio ',n"');
#end i f

if ((stat != SS$ _NORMAL)I I(iosb[0l != SS$ _NORMARL))

printf("** Mailbox read error, stat= %d (%x).");
printf(" iosb[0l= %d (%x) **\n". stat. stat.

iosb[0], iosb[01);
exit _ gracefulIy()

switch (bufto])

f
c a se MSG$ _COINNECT:

connect rec =TRUE;
break:

97

c a se MSBG$ CO.NF IRM:
c a se MvSG$ I.NMMSG : b re ak:

de faulIt:
printf("** Network error,
printf("mbxbuf[ol= %d (%x) *\nl~

buf[O], buffO]);,
exit graceful ly()
I

} *end switch *
} *end while ~

#ifdef EnExFlag
printf("Exit read _ibx\n"):.

#end i f

} *end read mbx *

98

/routine to accept a network connection request

connect (buf)

char *buf;

offset,
s tat ,
iosb[41

char nodespec[128];

struct sd{
i nt le n;
char *ptr;

ncb ={0, nodespec };

#ifdef EnExFlag
printf("Enter connect\n");

#end i f

/* Extract network connect block from mailbox buf *

offset = buf[4] + 5: 1* point to ncb length *
ncb. len = buf[offset] ; /* put the len in our ncb ~
offset++; 1* point past ncb length *
for (i=O; i < ncb.len; i-++) /* get the ncb

nodespec[i] = buf [i + offset]:
nodespec [i]- '\O

#ifdef pr _flag
printf("** nodespec= %s **\lU? nodespec):.
printf("** next chan= %d **\fl"* next chan);

*endi f

UAssign controller channel to the net ~
stat= sys$assign(&netnan. &be _chan[Qj. 0. &netmbx):
i f (stat- != SS$ NORMAL)

printf("** Assign error be chan %d, %
printf("stat= %d (%x) **\nfI, next _chan.

s tat, st at)

exit _gracefullyo:
I

/* accept the connection.*/
stat= sys$qiow(0, be _chanfOl, 10$ _ACCESS,

iosb, 0,0,6, &ncb, 0,0.0,0)-,
if ((stat != SS$ _NORMAL)I I(iosb[0] != SS$ _NORMvAL))

printf("** Accept error be chan %d,)

printf("stat= %d(%x), iosb[0]= %d(%x) **\n".

next _chan, stat, stat. iosb[0J. iosb[O]);
exit graceful ly(:

: ifdef EnExFlag

print f("Exit connect \n")
Fend i f

} *end connect *

100

routine to disconnect all network links ~

di sconne c t

int. stat. i;

#ifdef EnExFlag
printf("Enter Disconnect\n");

*:end i f

for (i=1i; i <= NoBackends; i-++)

f
*ifdef pr _flag

printf('Disconnecting backend %d\n", i);
#end i f

stat= sys$dassgn(be _chan[i]);
if (stat != SS$ _NORtMU)
printf("?** Deassign Error for backend '/d,")
printf("stat=%'/d (%x) **\nfl i,stat, stat);

I
#ifdef EnExFlag

printf("Exit Disconnect\n");,
#end i f

/* Routine to close network connections then abort *
exit _gracefully()

sleep(DELAY);
disconnect (
exi t()

101

LIST OF REFEREN(ES

1. Boyne. R. D.. Hsiao. D. K.. Kerr. D. S.. and Orooji. A.. A message-oriented
implementation of a multi-backend database system (MBDS). Database
Machines. Leilich and Missikoff (eds.). Springer-Verlag, (1983).

2. Demurjian. S. A.. Hsiao. D. K., and Menon. M. J.. A multi-backend data-
base system for performance gains, capacity growth and hardware upgrade.
Proceedings of the Second International Conference on Data Engineering,
(1986).

3. Kerr. D.S.. Orooji. A.. Shi. Z. and Strawser. P. R., The implementation of a
multi-backend database system (MBDS): part I - software engineering stra-
tegies and efforts towards a prototype MBDS. Advanced Database Machine
Architecture. Hsiao (ed.). Prentice-Hall, (1983).

4. He. X.. Higashida. M.. Hsiao. D. K.. Kerr, D. S., Orooji. A.. Shi. Z. and
Strawser. P. R.. The implementation of a multi-backend database system
(MBDS): part II - the first prototype MBDS and the software engineering
experience. Advanced Database Machine Architecture. Hsiao (ed.).
Prentice-Hall. (1983).

5. Wong, A.. Towards highly portable database systems: issues and solutions.
Master's Thesis, Naval Postgraduate School. Montery, California. (to be
published).

102

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library. Code 0142 2
Naval Postgraduate School
Monterey. California 93943-5000

3. Department Chairman, Code 52 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Curriculum Officer, Code 37 1
Computer Technology Programs
Naval Postgraduate School
Monterey. California 93943-5000

5. Professor David K. Hsiao, Code 52Hq 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

6. Steven A. Demurjian, Code 52 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

7. LT Bruce D. Silberman 6
1720 Seaton Drive
Virginia Beach, Va 23462

103

OT,

